login
A378694
G.f. A(x) satisfies A(x) = 1 + x*A(x)^7/(1 - x*A(x)^6).
2
1, 1, 8, 91, 1210, 17577, 270314, 4326070, 71300386, 1202012254, 20630488004, 359279348424, 6332747550808, 112761701957119, 2025325557546780, 36650364776763804, 667570101840389826, 12229542931765845994, 225183117821591853440, 4165207037639796288385
OFFSET
0,3
FORMULA
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^6/(1 - x*A(x)^6)).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
PROG
(PARI) a(n, r=1, s=1, t=7, u=6) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 04 2024
STATUS
approved