login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190943
a(n) = 8*a(n-1) + 27*a(n-2), with a(0)=0, a(1)=1.
2
0, 1, 8, 91, 944, 10009, 105560, 1114723, 11767904, 124240753, 1311659432, 13847775787, 146197010960, 1543466033929, 16295047567352, 172033963454899, 1816237991957696, 19174820948943841, 202436993374408520, 2137216112616751867
OFFSET
0,3
FORMULA
G.f.: x/(1-8*x-27*x^2).
a(n) = ((4+sqrt(43))^n - (4-sqrt(43))^n)/(2*sqrt(43)).
MATHEMATICA
a = {0, 1}; Do[AppendTo[a, 8 a[[-1]] + 27 a[[-2]]], {18}]; a (* Bruno Berselli, Dec 26 2012 *)
CoefficientList[Series[x / (1 - 8 x - 27 x^2), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 19 2013 *)
PROG
(Maxima) a[0]:0$ a[1]:1$ a[n]:=8*a[n-1]+27*a[n-2]$ makelist(a[n], n, 0, 17);
(Magma) [n le 2 select n-1 else 8*Self(n-1)+27*Self(n-2): n in [1..17]];
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-8*x-27*x^2))) \\ G. C. Greubel, Dec 30 2017
CROSSREFS
Cf. A000045, A046717, A015533 (for type of recurrence).
Cf. A015611, A190441 (for type of closed formula).
Sequence in context: A372434 A116149 A184709 * A180912 A378694 A234280
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, May 24 2011
STATUS
approved