login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A378693
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(7/6)/(1 - x*A(x)) )^6.
3
1, 6, 63, 806, 11445, 173388, 2745470, 44891118, 752141682, 12845874594, 222813745704, 3914269052736, 69501455945987, 1245309605501088, 22488056019050124, 408861223600687710, 7478056231521533658, 137496627558561863460, 2540015518588821201453
OFFSET
0,2
FORMULA
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)/(1 - x*A(x)) )^6.
G.f.: A(x) = B(x)^6 where B(x) is the g.f. of A378694.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
PROG
(PARI) a(n, r=6, s=1, t=7, u=6) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 04 2024
STATUS
approved