login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} (2 + (1+x)^n)^n / (3 + (1+x)^n)^(n+1).
4

%I #19 Aug 10 2018 11:19:00

%S 1,1,8,91,1474,30765,785053,23682833,824522797,32537599175,

%T 1435199414014,69973425937141,3736662443907962,216901789032691605,

%U 13598124265965160130,915670842666691879191,65913110467411283181409,5050836914009172555862713,410501468976427335127369669,35269929119728622895198302033,3194195105084750546987502710855

%N G.f.: Sum_{n>=0} (2 + (1+x)^n)^n / (3 + (1+x)^n)^(n+1).

%C The following identity holds for |y| <= 1 and fixed real k > 0:

%C Sum_{n>=0} (k + y^n)^n/(1+k + y^n)^(n+1) = Sum_{n>=0} (y^n - 1)^n/(1+k - k*y^n)^(n+1).

%H Paul D. Hanna, <a href="/A302614/b302614.txt">Table of n, a(n) for n = 0..200</a>

%F G.f.: Sum_{n>=0} ((1+x)^n - 1)^n / (3 - 2*(1+x)^n)^(n+1).

%F a(n) ~ c * d^n * n! / sqrt(n), where d = 4.64471605501103711823541367464... and c = 0.270134222044915506270113032... - _Vaclav Kotesovec_, Aug 10 2018

%e G.f.: A(x) = 1 + x + 8*x^2 + 91*x^3 + 1474*x^4 + 30765*x^5 + 785053*x^6 + 23682833*x^7 + 824522797*x^8 + 32537599175*x^9 + ...

%e such that

%e A(x) = 1/4 + (2 + (1+x))/(3 + (1+x))^2 + (2 + (1+x)^2)^2/(3 + (1+x)^2)^3 + (2 + (1+x)^3)^3/(3 + (1+x)^3)^4 + (2 + (1+x)^4)^4/(3 + (1+x)^4)^5 + (2 + (1+x)^5)^5/(3 + (1+x)^5)^6 + (2 + (1+x)^6)^6/(3 + (1+x)^6)^7 + ...

%e Also,

%e A(x) = 1 + ((1+x) - 1)/(3 - 2*(1+x))^2 + ((1+x)^2 - 1)^2/(3 - 2*(1+x)^2)^3 + ((1+x)^3 - 1)^3/(3 - 2*(1+x)^3)^4 + ((1+x)^4 - 1)^4/(3 - 2*(1+x)^4)^5 + ((1+x)^5 - 1)^5/(3 - 2*(1+x)^5)^6 + ((1+x)^6 - 1)^6/(3 - 2*(1+x)^6)^7 + ...

%e RELATED INFINITE SERIES.

%e (1) At x = -1/3: the following sums are equal

%e S1 = Sum_{n>=0} 3^n * (2*3^n + 2^n)^n / (3^(n+1) + 2^n)^(n+1),

%e S1 = Sum_{n>=0} (-3)^n * (3^n - 2^n)^n / (3^(n+1) - 2^(n+1))^(n+1).

%e Explicitly,

%e S1 = 1/4 + 3*8/11^2 + 9*22^2/31^3 + 27*62^3/89^4 + 81*178^4/259^5 + 243*518^5/761^6 + 729*1522^6/2251^7 + 2187*4502^7/6689^8 + 6561*13378^8/19939^9 + 19683*39878^9/59561^10 + ...

%e S1 = 1 - 3*1/5^2 + 9*5^2/19^3 - 27*19^3/65^4 + 81*65^4/211^5 - 243*211^5/665^6 + 729*665^6/2059^7 - 2187*2059^7/6305^8 + 6561*6305^8/19171^9 - 19683*19171^9/58025^10 + ...

%e where S1 = 0.90501051059439877583104471171480036033530856741889530664913...

%e (2) At x = -1/2: the following sums are equal

%e S2 = Sum_{n>=0} 2^n * (2^(n+1) + 1)^n / (3*2^n + 1)^(n+1),

%e S2 = Sum_{n>=0} (-2)^n * (2^n - 1)^n / (3*2^n - 2)^(n+1).

%e Explicitly,

%e S2 = 1/4 + 2*5/7^2 + 4*9^2/13^3 + 8*17^3/25^4 + 16*33^4/49^5 + 32*65^5/97^6 + 64*129^6/193^7 + 128*257^7/385^8 + 256*513^8/769^9 + 512*1025^9/1537^10 + ...

%e S2 = 1 - 2*1/4^2 + 4*3^2/10^3 - 8*7^3/22^4 + 16*15^4/46^5 - 32*31^5/94^6 + 64*63^6/190^7 - 128*127^7/382^8 + 256*255^8/766^9 - 512*511^9/1534^10 + ...

%e where S2 = 0.90222608896798122564942421232120719521782835530371831680447...

%o (PARI) {a(n) = my(A=1, o=x*O(x^n)); A = sum(m=0, n, ((1+x +o)^m - 1)^m / (3 - 2*(1+x +o)^m)^(m+1)); polcoeff(A, n)}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A122400, A302598, A302615.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Apr 10 2018