OFFSET
0,4
COMMENTS
a(n) is the number of graphs on vertices 1,...,n such that, when these vertices are arranged counterclockwise around a circle and edges are drawn as straight line segments, the resulting diagram is connected. - Jonathan Novak (j2novak(AT)math.uwaterloo.ca), Apr 30 2010
In this interpretation, both intersecting (set theoretically) and crossing (topologically) edges are considered connected. - Gus Wiseman, Feb 23 2019
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50
FORMULA
G.f.: A(x) = x/Series_Reversion( x*Sum_{k=0..n} 2^(k(k-1)/2)*x^k ).
Equals the free cumulant sequence corresponding to A006125. - Jonathan Novak (j2novak(AT)math.uwaterloo.ca), Apr 30 2010
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 39*x^4 + 748*x^5 + 27162*x^6 +...
Let F(x) = 1 + x + 2*x^2 + 8*x^3 + 64*x^4 + 1024*x^5 +...+ 2^(n*(n-1)/2)*x^n +..
then A(x) = F(x/A(x)), A(x*F(x)) = F(x).
Coefficient of x^n in A(x)^(n+1)/(n+1) = 2^(n*(n-1)/2),
as can be seen by the main diagonal in the array of
coefficients in the initial powers of A(x):
A^1: [(1), 1, 1, 4, 39, 748, 27162, 1880872, 252273611,...;
A^2: [1, (2), 3, 10, 87, 1582, 55914, 3817876, 508370795,...;
A^3: [1, 3, (6), 19, 147, 2517, 86398, 5813550, 768378627,...;
A^4: [1, 4, 10, (32), 223, 3572, 118778, 7870640, 1032387787,...;
A^5: [1, 5, 15, 50, (320), 4771, 153245, 9992130, 1300492845,...;
A^6: [1, 6, 21, 74, 444, (6144), 190023, 12181278, 1572792585,...;
A^7: [1, 7, 28, 105, 602, 7728, (229376), 14441659, 1849390375,...;
A^8: [1, 8, 36, 144, 802, 9568, 271616, (16777216), 2130394591,...;
A^9: [1, 9, 45, 192, 1053, 11718, 317112, 19192320, (2415919104),...;
dividing each diagonal term in row n by (n+1) gives 2^(n*(n-1)/2).
The diagonal above the main diagonal gives coefficients of l.g.f.:
log(F(x)) = x + 3*x^2/2 + 19*x^3/3 + 223*x^4/4 + 4771*x^5/5 +...
MATHEMATICA
max = 15; s = x*Sum[2^(k*(k-1)/2)*x^k, {k, 0, max}] + O[x]^(max+2); x/InverseSeries[s] + O[x]^(max+1) // CoefficientList[#, x]& (* Jean-François Alcover, Sep 03 2017 *)
croXQ[stn_]:=MatchQ[stn, {___, {___, x_, ___, y_, ___}, ___, {___, z_, ___, t_, ___}, ___}/; x<z<y<t||z<x<t<y];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
bicmpts[stn_]:=csm[Union[Subsets[stn, {1}], Select[Subsets[stn, {2}], Intersection@@#!={}&], Select[Subsets[stn, {2}], croXQ]]];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], And[Union@@#==Range[n], Length[bicmpts[#]]<=1]&]], {n, 0, 5}] (* Gus Wiseman, Feb 23 2019 *)
PROG
(PARI) a(n)=polcoeff(x/serreverse(x*sum(k=0, n, 2^(k*(k-1)/2)*x^k +x*O(x^n))), n)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Paul D. Hanna, Jan 15 2008
EXTENSIONS
Name changed and part of prior name moved to formula section by Paul D. Hanna, Sep 19 2013
STATUS
approved