login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278989
a(n) is the number of words of length n over an alphabet of size 4 that are in standard order and which have the property that every letter that appears in the word is repeated.
1
0, 0, 1, 1, 4, 11, 41, 162, 715, 3425, 16777, 80928, 379347, 1726375, 7654817, 33219630, 141692075, 596122477, 2480969257, 10237751324, 41963944275, 171103765747, 694775280993, 2812004330666, 11352134320523, 45736973060601, 183981143571721, 739167464021912, 2966826380664595, 11899055223201855
OFFSET
0,5
FORMULA
Conjectures from Colin Barker, Nov 25 2017: (Start)
G.f.: x^2*(1 - 19*x + 159*x^2 - 776*x^3 + 2474*x^4 - 5498*x^5 + 8993*x^6 - 11471*x^7 + 11815*x^8 - 9478*x^9 + 5348*x^10 - 1848*x^11 + 288*x^12) / ((1 - x)^4*(1 - 2*x)^3*(1 - 3*x)^2*(1 - 4*x)).
a(n) = 20*a(n-1) - 175*a(n-2) + 882*a(n-3) - 2835*a(n-4) + 6072*a(n-5) - 8777*a(n-6) + 8458*a(n-7) - 5204*a(n-8) + 1848*a(n-9) - 288*a(n-10) for n > 14.
(End)
CROSSREFS
A row of the array in A278987.
Sequence in context: A278988 A214188 A214239 * A000296 A032265 A320155
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 06 2016
STATUS
approved