login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306386
Number of chord diagrams with n chords all having arc length at least 3.
6
1, 0, 0, 1, 7, 68, 837, 11863, 189503, 3377341, 66564396, 1439304777, 33902511983, 864514417843, 23735220814661, 698226455579492, 21914096529153695, 731009183350476805, 25829581529376423945, 963786767538027630275, 37871891147795243899204, 1563295398737378236910447
OFFSET
0,5
COMMENTS
A cyclical form of A190823.
Also the number of 2-uniform set partitions of {1...2n} such that, when the vertices are arranged uniformly around a circle, no block has its two vertices separated by an arc length of less than 3.
FORMULA
a(n) is even <=> n in { A135042 }. - Alois P. Heinz, Feb 27 2019
EXAMPLE
The a(8) = 7 2-uniform set partitions with all arc lengths at least 3:
{{1,4},{2,6},{3,7},{5,8}}
{{1,4},{2,7},{3,6},{5,8}}
{{1,5},{2,6},{3,7},{4,8}}
{{1,5},{2,6},{3,8},{4,7}}
{{1,5},{2,7},{3,6},{4,8}}
{{1,6},{2,5},{3,7},{4,8}}
{{1,6},{2,5},{3,8},{4,7}}
MAPLE
a:= proc(n) option remember; `if`(n<8, [1, 0$2, 1, 7, 68, 837, 11863][n+1],
((8*n^4-64*n^3+142*n^2-66*n+109) *a(n-1)
-(24*n^4-248*n^3+870*n^2-1106*n+241)*a(n-2)
+(24*n^4-264*n^3+982*n^2-1270*n+145)*a(n-3)
-(8*n^4-96*n^3+374*n^2-486*n+33) *a(n-4)
-(4*n^3-24*n^2+39*n-2) *a(n-5))/(4*n^3-36*n^2+99*n-69))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Feb 27 2019
MATHEMATICA
dtui[{}, _]:={{}}; dtui[set:{i_, ___}, n_]:=Join@@Function[s, Prepend[#, s]&/@dtui[Complement[set, s], n]]/@Table[{i, j}, {j, Switch[i, 1, Select[set, 3<#<n-1&], 2, Select[set, 4<#<n&], _, Select[set, #>i+2&]]}];
Table[Length[dtui[Range[n], n]], {n, 0, 12, 2}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 26 2019
EXTENSIONS
a(10)-a(16) from Alois P. Heinz, Feb 26 2019
a(17)-a(21) from Alois P. Heinz, Feb 27 2019
STATUS
approved