The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306386 Number of chord diagrams with n chords all having arc length at least 3. 6
 1, 0, 0, 1, 7, 68, 837, 11863, 189503, 3377341, 66564396, 1439304777, 33902511983, 864514417843, 23735220814661, 698226455579492, 21914096529153695, 731009183350476805, 25829581529376423945, 963786767538027630275, 37871891147795243899204, 1563295398737378236910447 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS A cyclical form of A190823. Also the number of 2-uniform set partitions of {1...2n} such that, when the vertices are arranged uniformly around a circle, no block has its two vertices separated by an arc length of less than 3. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..404 FORMULA a(n) is even <=> n in { A135042 }. - Alois P. Heinz, Feb 27 2019 EXAMPLE The a(8) = 7 2-uniform set partitions with all arc lengths at least 3:   {{1,4},{2,6},{3,7},{5,8}}   {{1,4},{2,7},{3,6},{5,8}}   {{1,5},{2,6},{3,7},{4,8}}   {{1,5},{2,6},{3,8},{4,7}}   {{1,5},{2,7},{3,6},{4,8}}   {{1,6},{2,5},{3,7},{4,8}}   {{1,6},{2,5},{3,8},{4,7}} MAPLE a:= proc(n) option remember; `if`(n<8, [1, 0\$2, 1, 7, 68, 837, 11863][n+1],       ((8*n^4-64*n^3+142*n^2-66*n+109)    *a(n-1)       -(24*n^4-248*n^3+870*n^2-1106*n+241)*a(n-2)       +(24*n^4-264*n^3+982*n^2-1270*n+145)*a(n-3)       -(8*n^4-96*n^3+374*n^2-486*n+33)    *a(n-4)       -(4*n^3-24*n^2+39*n-2)              *a(n-5))/(4*n^3-36*n^2+99*n-69))     end: seq(a(n), n=0..23);  # Alois P. Heinz, Feb 27 2019 MATHEMATICA dtui[{}, _]:={{}}; dtui[set:{i_, ___}, n_]:=Join@@Function[s, Prepend[#, s]&/@dtui[Complement[set, s], n]]/@Table[{i, j}, {j, Switch[i, 1, Select[set, 3<#i+2&]]}]; Table[Length[dtui[Range[n], n]], {n, 0, 12, 2}] CROSSREFS Cf. A000296, A000699, A001006, A001147, A001610, A003436, A038041, A054726, A135042, A170941, A190823, A278990, A306419, A322402, A324011, A324169. Column k=3 of A324428. Sequence in context: A297502 A087567 A328046 * A136629 A197525 A133697 Adjacent sequences:  A306383 A306384 A306385 * A306387 A306388 A306389 KEYWORD nonn AUTHOR Gus Wiseman, Feb 26 2019 EXTENSIONS a(10)-a(16) from Alois P. Heinz, Feb 26 2019 a(17)-a(21) from Alois P. Heinz, Feb 27 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 07:42 EST 2022. Contains 350605 sequences. (Running on oeis4.)