login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379521
Expansion of (1/x) * Series_Reversion( x / ( (1+x)^3 * (1+2*x)^2 ) ).
1
1, 7, 68, 767, 9425, 122436, 1653776, 22992655, 326863667, 4729547023, 69424933968, 1031309398852, 15474833826028, 234201961398776, 3570887895432504, 54799089019823407, 845757173849239415, 13119400228929684885, 204429551432900950068, 3198423097762769254279, 50225078058311068601425
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} 2^k * binomial(2*(n+1),k) * binomial(3*(n+1),n-k).
a(n) = (1/(n+1)) * [x^n] ( (1+x)^3 * (1+2*x)^2 )^(n+1).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^3*(1+2*x)^2))/x)
(PARI) a(n) = sum(k=0, n, 2^k*binomial(2*(n+1), k)*binomial(3*(n+1), n-k))/(n+1);
CROSSREFS
Sequence in context: A297502 A087567 A328046 * A371392 A306386 A136629
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 24 2024
STATUS
approved