login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306387
Number of partitions of sigma_1(n) into divisors of n.
0
1, 2, 2, 6, 2, 27, 2, 26, 7, 31, 2, 574, 2, 38, 33, 166, 2, 879, 2, 924, 39, 52, 2, 23732, 9, 59, 47, 1403, 2, 34256, 2, 1626, 55, 73, 47, 230819, 2, 80, 61, 50888, 2, 65638, 2, 2709, 1734, 94, 2, 2117920, 11, 3038, 77, 3536, 2, 113448, 65, 97298, 83, 115, 2, 19613170, 2, 122, 2601, 25510, 73, 180350
OFFSET
1,2
COMMENTS
The equality sigma_1(n) = Sum{d|n} d defines one partition of sigma_1(n) into distinct divisors of n. This sequence gives the number of partitions of sigma_1(n) into not necessarily distinct divisors of n.
For prime number p, sigma_1(p) = p+1 and there are only two partitions: p and 1+1+1+...+1 (p summands).
EXAMPLE
For n = 4, sigma_1(4) = 7, divisors(4) = {1,2,4} and 7 = 4+2+1 = 4+1+1+1 = 2+2+2+1 = 2+2+1+1+1 = 2+1+1+1+1+1 = 1+1+1+1+1+1+1.
For n = 9, sigma_1(9) = 13, divisors(9) = {1,3,9} and 13 = 9+3+1 = 9+1+1+1+1 = 3+3+3+3+1 = 3+3+3+1+1+1+1 = 3+3+1+1+1+1+1+1+1 = 3+1+1+1+1+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1+1+1+1.
PROG
(Magma) v:=[1..47];
for u in v do
u, #RestrictedPartitions(SumOfDivisors(u), {d:d in Divisors(u)});
end for;
(Magma)
a:= func< n | #RestrictedPartitions(SumOfDivisors(n), {d:d in Divisors(n)}) >; [ a(n) : n in [1..47] ];
(PARI) numbpartUsing(n, v, mx=#v)=if(n<1, return(n==0)); sum(i=1, mx, numbpartUsing(n-v[i], v, i)) \\ inefficient;
a(n) = numbpartUsing(sigma(n), divisors(n)); \\ after A018818; Michel Marcus, Feb 27 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Feb 26 2019
STATUS
approved