OFFSET
1,2
COMMENTS
The equality sigma(n) = Sum{d|n} d defines unique partition of sigma(n) into distinct divisors of n. This sequence gives the number of partitions of sigma(n) into not necessarily distinct divisors of n.
For prime number p, sigma(p) = p+1 and there are only two partitions: p and 1+1+1+...+1 (p summands).
LINKS
EXAMPLE
For n = 4, sigma(4) = 7, divisors(4) = {1,2,4} and 7 = 4+2+1 = 4+1+1+1 = 2+2+2+1 = 2+2+1+1+1 = 2+1+1+1+1+1 = 1+1+1+1+1+1+1.
For n = 9, sigma(9) = 13, divisors(9) = {1,3,9} and 13 = 9+3+1 = 9+1+1+1+1 = 3+3+3+3+1 = 3+3+3+1+1+1+1 = 3+3+1+1+1+1+1+1+1 = 3+1+1+1+1+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1+1+1+1.
PROG
(Magma) v:=[1..47];
for u in v do
u, #RestrictedPartitions(SumOfDivisors(u), {d:d in Divisors(u)});
end for;
(Magma)
a:= func< n | #RestrictedPartitions(SumOfDivisors(n), {d:d in Divisors(n)}) >; [ a(n) : n in [1..47] ];
(PARI) numbpartUsing(n, v, mx=#v)=if(n<1, return(n==0)); sum(i=1, mx, numbpartUsing(n-v[i], v, i)) \\ inefficient;
a(n) = numbpartUsing(sigma(n), divisors(n)); \\ after A018818; Michel Marcus, Feb 27 2019
(PARI) A306387(n) = { my(p=1, s=sigma(n)); fordiv(n, d, p /= (1 - 'x^d)); polcoeff(Ser(p, 'x, 1+s), s); }; \\ Antti Karttunen, Jan 22 2025
CROSSREFS
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Feb 26 2019
EXTENSIONS
Term a(60) corrected from 19613170 to 92531888 by Antti Karttunen, Jan 22 2025
STATUS
approved