login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319352
a(n) = Product_{d|n, d<n} prime(1+A056239(d)), where A056239(d) gives the weight of the partition whose Heinz-number is d.
3
1, 2, 2, 6, 2, 30, 2, 30, 10, 42, 2, 1050, 2, 66, 70, 210, 2, 2310, 2, 2310, 110, 78, 2, 80850, 14, 102, 110, 4290, 2, 210210, 2, 2310, 130, 114, 154, 1651650, 2, 138, 170, 210210, 2, 510510, 2, 6630, 10010, 174, 2, 11561550, 22, 7854, 190, 9690, 2, 510510, 182, 510510, 230, 186, 2, 2555102550, 2, 222, 20570, 30030, 238, 881790, 2
OFFSET
1,2
LINKS
FORMULA
a(n) = Product_{d|n, d<n} prime(1+A056239(d)).
For all n >= 1:
A001221(a(n)) = A304793(n).
A001222(a(n)) = A032741(n).
1+A056169(a(n)) = A301855(n).
PROG
(PARI)
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
A319352(n) = { my(m=1); fordiv(n, d, if(d<n, m *= prime(1+A056239(d)))); (m); };
CROSSREFS
Cf. A056239, A319353 (rgs-transform).
Sequence in context: A359004 A306387 A308692 * A300834 A293214 A293216
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 17 2018
STATUS
approved