|
|
A319354
|
|
a(n) = Product prime(k), where k ranges over the lengths of all arithmetic progressions formed from the divisors of n (with at least two distinct terms each); a(1) = 2 by convention.
|
|
4
|
|
|
2, 3, 3, 27, 3, 1215, 3, 729, 27, 729, 3, 93002175, 3, 729, 1215, 59049, 3, 39858075, 3, 14348907, 729, 729, 3, 576626970315375, 27, 729, 729, 23914845, 3, 176518460300625, 3, 14348907, 729, 729, 729, 6305415920398625625, 3, 729, 729, 38127987424935, 3, 63546645708225, 3, 14348907, 66430125, 729, 3, 289588836976147679079375, 27, 14348907, 729
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
For all n >= 1:
|
|
EXAMPLE
|
For n = 6, the arithmetic progressions found in its divisor set {1, 2, 3, 6} are: {1, 2}, {1, 3}, {2, 3}, {2, 6}, {3, 6} and {1, 2, 3}. Five of these have length 2, and one is of length 3, thus a(6) = prime(2)^5 * prime(3) = 243*5 = 1215.
|
|
PROG
|
(PARI) A319354(n) = if(1==n, 2, my(d=divisors(n), m=1); for(i=1, (#d-1), for(j=(i+1), #d, my(c=1, k=d[j], s=(d[j]-d[i])); while(!(n%k), k+=s; c++); m *= prime(c))); (m));
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|