login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281786
Expansion of a(q) * b(q^2) + a(q^2) * b(q) in powers of q where a(), b() are cubic AGM functions.
3
2, 3, 3, -24, 3, 18, -24, 24, 3, -24, 18, 36, -24, 42, 24, -144, 3, 54, -24, 60, 18, -192, 36, 72, -24, 93, 42, -24, 24, 90, -144, 96, 3, -288, 54, 144, -24, 114, 60, -336, 18, 126, -192, 132, 36, -144, 72, 144, -24, 171, 93, -432, 42, 162, -24, 216, 24, -480
OFFSET
0,1
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
FORMULA
Expansion of 3 * b(q^3) * b(q^6) - b(q) * b(q^2) in powers of q where b() is a cubic AGM function.
a(n) = 3*b(n) if n>0 where b() is multiplicative with b(2^e) = 1, b(3^e) = -8 if e>0, b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
a(n) = 3 * A281786(n) if n>0. a(2*n) = a(n). a(3*n) = -24 * A186099(n).
EXAMPLE
G.f. = 2 + 3*q + 3*q^2 - 24*q^3 + 3*q^4 + 18*q^5 - 24*q^6 + 24*q^7 + 3*q^8 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 2 Boole[n == 0], 3 If[ Divisible[n, 3], -8, 1] DivisorSigma[ 1, n / (2^IntegerExponent[n, 2] 3^IntegerExponent[n, 3])]];
a[ n_] := If[ n < 1, 2 Boole[n == 0], 3 Times @@ (Which[ # < 3, 1, # == 3, -8, True, (#^(#2+1) - 1) / (# - 1)] & @@@ FactorInteger@n)];
PROG
(PARI) {a(n) = if( n<1, 2*(n==0), if( n%3, 3, -24) * sigma(n / (2^valuation(n, 2) * 3^valuation(n, 3))))};
(PARI) {a(n) = if( n<1, 2*(n==0), 3 * sumdiv(n, d, d*(d%2)) - if( n%3==0, 36 * sumdiv(n/3, d, d*(d%2))) + if( n%9==0, 81 * sumdiv(n/9, d, d*(d%2))))};
CROSSREFS
Sequence in context: A217705 A084956 A216724 * A319354 A100650 A096502
KEYWORD
sign
AUTHOR
Michael Somos, Apr 09 2017
STATUS
approved