OFFSET
0,3
REFERENCES
Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, Congressus Numerantium, Vol. 208 (2011), pp. 147-165.
LINKS
Alois P. Heinz, Rows n = 0..18, flattened
EXAMPLE
Triangle begins:
1
1
2
3 3
24 0
100 15 0 5
594 108 18 0
4389 504 119 21 0 7
35744 3520 960 64 32 0
325395 31077 5238 927 207 27 0 9
3288600 288300 42050 8800 900 100 50 0
...
MAPLE
b:= proc(s, x, y, n) option remember; expand(`if`(s={}, 1, add(
`if`(x>0 and irem(n+x-y, n)=2 and irem(n+y-j, n)=2, z, 1)*
b(s minus {j}, y, j, n), j=s)))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..max(0,
iquo(n-1, 2)*2-1)))(b({$1..n}, 0$2, n)):
seq(T(n), n=0..11); # Alois P. Heinz, Apr 13 2021
MATHEMATICA
b[s_, x_, y_, n_] := b[s, x, y, n] = Expand[If[s == {}, 1, Sum[
If[x>0 && Mod[n + x - y, n] == 2 && Mod[n + y - j, n] == 2, z, 1]*
b[s~Complement~{j}, y, j, n], {j, s}]]];
T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Max[0,
Quotient[n - 1, 2]*2 - 1]}]][b[Range[n], 0, 0, n]];
Table[T[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Mar 06 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Sep 15 2012
EXTENSIONS
More terms from Alois P. Heinz, Apr 13 2021
STATUS
approved