login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216724
Triangle read by rows: T(n,k) is the number of permutations of [1..n] with k modular progressions of rise 2, distance 1 and length 3 (n >= 0, k >= 0).
3
1, 1, 2, 3, 3, 24, 0, 100, 15, 0, 5, 594, 108, 18, 0, 4389, 504, 119, 21, 0, 7, 35744, 3520, 960, 64, 32, 0, 325395, 31077, 5238, 927, 207, 27, 0, 9, 3288600, 288300, 42050, 8800, 900, 100, 50, 0, 36489992, 2946141, 409827, 59785, 9174, 1518, 319, 33, 0, 11
OFFSET
0,3
REFERENCES
Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, Congressus Numerantium, Vol. 208 (2011), pp. 147-165.
LINKS
EXAMPLE
Triangle begins:
1
1
2
3 3
24 0
100 15 0 5
594 108 18 0
4389 504 119 21 0 7
35744 3520 960 64 32 0
325395 31077 5238 927 207 27 0 9
3288600 288300 42050 8800 900 100 50 0
...
MAPLE
b:= proc(s, x, y, n) option remember; expand(`if`(s={}, 1, add(
`if`(x>0 and irem(n+x-y, n)=2 and irem(n+y-j, n)=2, z, 1)*
b(s minus {j}, y, j, n), j=s)))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..max(0,
iquo(n-1, 2)*2-1)))(b({$1..n}, 0$2, n)):
seq(T(n), n=0..11); # Alois P. Heinz, Apr 13 2021
MATHEMATICA
b[s_, x_, y_, n_] := b[s, x, y, n] = Expand[If[s == {}, 1, Sum[
If[x>0 && Mod[n + x - y, n] == 2 && Mod[n + y - j, n] == 2, z, 1]*
b[s~Complement~{j}, y, j, n], {j, s}]]];
T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Max[0,
Quotient[n - 1, 2]*2 - 1]}]][b[Range[n], 0, 0, n]];
Table[T[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Mar 06 2022, after Alois P. Heinz *)
CROSSREFS
Column 1 is A174073.
Row sums are A000142.
Sequence in context: A135353 A217705 A084956 * A281786 A319354 A100650
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Sep 15 2012
EXTENSIONS
More terms from Alois P. Heinz, Apr 13 2021
STATUS
approved