login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281785
a(n) is multiplicative with a(2^e) = 1, a(3^e) = -8 if e>0, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
2
1, 1, -8, 1, 6, -8, 8, 1, -8, 6, 12, -8, 14, 8, -48, 1, 18, -8, 20, 6, -64, 12, 24, -8, 31, 14, -8, 8, 30, -48, 32, 1, -96, 18, 48, -8, 38, 20, -112, 6, 42, -64, 44, 12, -48, 24, 48, -8, 57, 31, -144, 14, 54, -8, 72, 8, -160, 30, 60, -48, 62, 32, -64, 1, 84
OFFSET
1,3
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
FORMULA
Expansion of (a(x) * b(x^2) + a(x^2) * b(x) - 2) / 3 in powers of x where a(), b() are cubic AGM functions.
Expansion of (3 * b(x^3) * b(x^6) - b(x) * b(x^2) - 2) / 3 in powers of x where b() is a cubic AGM function.
3 * a(n) = A281786(n) if n>0. a(2*n) = a(n). a(3*n) = -8 * A186099(n).
Dirichlet g.f.: zeta(s) * zeta(s-1) * (1-2^(1-s)) * (1-3^(1-s)) * (1-3^(2-s)). - Amiram Eldar, Oct 24 2023
EXAMPLE
G.f. = x + x^2 - 8*x^3 + x^4 + 6*x^5 - 8*x^6 + 8*x^7 + x^8 - 8*x^9 + 6*x^10 + ...
MAPLE
f:= n -> mul(piecewise( t[1] = 2, 1, t[1] = 3, -8, (t[1]^(t[2]+1)-1)/(t[1]-1)), t = ifactors(n)[2]):
map(f, [$1..100]); # Robert Israel, Feb 01 2017
MATHEMATICA
a[ n_] := If[ n < 1, 0, If[ Divisible[n, 3], -8, 1] DivisorSigma[ 1, n / (2^IntegerExponent[n, 2] 3^IntegerExponent[n, 3])]];
a[ n_] := If[ n < 1, 0, Times @@ (Which[ # < 3, 1, # == 3, -8, True, (#^(#2+1) - 1) / (# - 1)] & @@@ FactorInteger@n)];
PROG
(PARI) {a(n) = if( n<1, 0, if( n%3, 1, -8) * sigma(n / (2^valuation(n, 2) * 3^valuation(n, 3))))};
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d*(d%2)) - if( n%3==0, 12 * sumdiv(n/3, d, d*(d%2))) + if( n%9==0, 27 * sumdiv(n/9, d, d*(d%2))))};
CROSSREFS
Sequence in context: A007404 A299627 A157697 * A240982 A258146 A182551
KEYWORD
mult,sign
AUTHOR
Michael Somos, Jan 30 2017
STATUS
approved