login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of a(q) * b(q^2) + a(q^2) * b(q) in powers of q where a(), b() are cubic AGM functions.
3

%I #8 Jul 29 2018 20:45:07

%S 2,3,3,-24,3,18,-24,24,3,-24,18,36,-24,42,24,-144,3,54,-24,60,18,-192,

%T 36,72,-24,93,42,-24,24,90,-144,96,3,-288,54,144,-24,114,60,-336,18,

%U 126,-192,132,36,-144,72,144,-24,171,93,-432,42,162,-24,216,24,-480

%N Expansion of a(q) * b(q^2) + a(q^2) * b(q) in powers of q where a(), b() are cubic AGM functions.

%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

%H G. C. Greubel, <a href="/A281786/b281786.txt">Table of n, a(n) for n = 0..5000</a>

%F Expansion of 3 * b(q^3) * b(q^6) - b(q) * b(q^2) in powers of q where b() is a cubic AGM function.

%F a(n) = 3*b(n) if n>0 where b() is multiplicative with b(2^e) = 1, b(3^e) = -8 if e>0, b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.

%F a(n) = 3 * A281786(n) if n>0. a(2*n) = a(n). a(3*n) = -24 * A186099(n).

%e G.f. = 2 + 3*q + 3*q^2 - 24*q^3 + 3*q^4 + 18*q^5 - 24*q^6 + 24*q^7 + 3*q^8 + ...

%t a[ n_] := If[ n < 1, 2 Boole[n == 0], 3 If[ Divisible[n, 3], -8, 1] DivisorSigma[ 1, n / (2^IntegerExponent[n, 2] 3^IntegerExponent[n, 3])]];

%t a[ n_] := If[ n < 1, 2 Boole[n == 0], 3 Times @@ (Which[ # < 3, 1, # == 3, -8, True, (#^(#2+1) - 1) / (# - 1)] & @@@ FactorInteger@n)];

%o (PARI) {a(n) = if( n<1, 2*(n==0), if( n%3, 3, -24) * sigma(n / (2^valuation(n, 2) * 3^valuation(n, 3))))};

%o (PARI) {a(n) = if( n<1, 2*(n==0), 3 * sumdiv(n, d, d*(d%2)) - if( n%3==0, 36 * sumdiv(n/3, d, d*(d%2))) + if( n%9==0, 81 * sumdiv(n/9, d, d*(d%2))))};

%Y Cf. A186099, A281785.

%K sign

%O 0,1

%A _Michael Somos_, Apr 09 2017