|
|
A187019
|
|
Coefficient of x^n in expansion of (1+n*x+(n+1)*x^2)^n.
|
|
5
|
|
|
1, 1, 10, 99, 1366, 23525, 484436, 11582375, 314830342, 9576682569, 322014499852, 11851803991115, 473634489404220, 20414267521982893, 943592267071798696, 46545155813085562575, 2439857423310573714758
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = [x^n] (1+n*x+(n+1)*x^2)^n.
a(n) = Sum (C(n, k)*C(n-k, n-2*k)*n^(n-2*k)*(n+1)^k, k=0..floor(n/2)).
a(n) ~ exp(2*sqrt(n)-2) * n^(n-1/4) / (2*sqrt(Pi)). - Vaclav Kotesovec, Apr 18 2014
a(n) = n! * [x^n] exp(n*x) * BesselI(0,2*sqrt(n + 1)*x). - Ilya Gutkovskiy, Jun 01 2020
|
|
MATHEMATICA
|
Flatten[{1, Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^(n-2*k)*(n+1)^k, {k, 0, Floor[n/2]}], {n, 1, 20}]}] (* Vaclav Kotesovec, Apr 18 2014 *)
Flatten[{1, Table[n^n * Hypergeometric2F1[1/2-n/2, -n/2, 1, 4*(1+n)/n^2], {n, 1, 20}]}] (* Vaclav Kotesovec, Apr 18 2014 *)
|
|
PROG
|
(Maxima) a(n):=coeff(expand((1+n*x+(n+1)*x^2)^n), x, n);
makelist(a(n), n, 0, 12);
(Magma) P<x>:=PolynomialRing(Integers()); [ Coefficients((1+n*x+(n+1)*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011
(PARI) a(n) = polcoef((1+n*x+(n+1)*x^2)^n, n); \\ Michel Marcus, Jun 01 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|