login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187019 Coefficient of x^n in expansion of (1+n*x+(n+1)*x^2)^n. 5
1, 1, 10, 99, 1366, 23525, 484436, 11582375, 314830342, 9576682569, 322014499852, 11851803991115, 473634489404220, 20414267521982893, 943592267071798696, 46545155813085562575, 2439857423310573714758 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] (1+n*x+(n+1)*x^2)^n.
a(n) = Sum (C(n, k)*C(n-k, n-2*k)*n^(n-2*k)*(n+1)^k, k=0..floor(n/2)).
a(n) ~ exp(2*sqrt(n)-2) * n^(n-1/4) / (2*sqrt(Pi)). - Vaclav Kotesovec, Apr 18 2014
a(n) = n! * [x^n] exp(n*x) * BesselI(0,2*sqrt(n + 1)*x). - Ilya Gutkovskiy, Jun 01 2020
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^(n-2*k)*(n+1)^k, {k, 0, Floor[n/2]}], {n, 1, 20}]}] (* Vaclav Kotesovec, Apr 18 2014 *)
Flatten[{1, Table[n^n * Hypergeometric2F1[1/2-n/2, -n/2, 1, 4*(1+n)/n^2], {n, 1, 20}]}] (* Vaclav Kotesovec, Apr 18 2014 *)
PROG
(Maxima) a(n):=coeff(expand((1+n*x+(n+1)*x^2)^n), x, n);
makelist(a(n), n, 0, 12);
(Magma) P<x>:=PolynomialRing(Integers()); [ Coefficients((1+n*x+(n+1)*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011
(PARI) a(n) = polcoef((1+n*x+(n+1)*x^2)^n, n); \\ Michel Marcus, Jun 01 2020
CROSSREFS
Sequence in context: A000456 A138365 A190823 * A292429 A145644 A317055
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Mar 02 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 9 01:17 EDT 2024. Contains 375759 sequences. (Running on oeis4.)