login
A317055
Triangle read by rows: T(0,0) = 1; T(n,k) = 10 T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
2
1, 10, 100, 1, 1000, 20, 10000, 300, 1, 100000, 4000, 30, 1000000, 50000, 600, 1, 10000000, 600000, 10000, 40, 100000000, 7000000, 150000, 1000, 1, 1000000000, 80000000, 2100000, 20000, 50, 10000000000, 900000000, 28000000, 350000, 1500, 1, 100000000000, 10000000000, 360000000, 5600000, 35000, 60
OFFSET
0,2
COMMENTS
The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013617 ((1+10*x)^n) and along skew diagonals pointing top-right in center-justified triangle given in A038303 ((10+x)^n).
The coefficients in the expansion of 1/(1-10x-x^2) are given by the sequence generated by the row sums.
The row sums are Denominators of continued fraction convergents to sqrt(26), see A041041.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 10.09901951359278483002... (a metallic mean) when n approaches infinity (see A176537: (5+sqrt(26))).
REFERENCES
Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 102
EXAMPLE
Triangle begins:
1;
10;
100, 1;
1000, 20;
10000, 300, 1;
100000, 4000, 30;
1000000, 50000, 600, 1;
10000000, 600000, 10000, 40;
100000000, 7000000, 150000, 1000, 1;
1000000000, 80000000, 2100000, 20000, 50;
10000000000, 900000000, 28000000, 350000, 1500, 1;
100000000000, 10000000000, 360000000, 5600000, 35000, 60;
1000000000000, 110000000000, 4500000000, 84000000, 700000, 2100, 1;
10000000000000, 1200000000000, 55000000000, 1200000000, 12600000, 56000, 70;
100000000000000, 13000000000000, 660000000000, 16500000000, 210000000, 1260000, 2800, 1;
MATHEMATICA
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 10 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten.
CROSSREFS
Row sums give A041041.
Cf. A011557 (column 0), A053541 (column 1), A081140 (column 2).
Sequence in context: A187019 A292429 A145644 * A284200 A355893 A228410
KEYWORD
tabf,nonn,easy
AUTHOR
Zagros Lalo, Jul 21 2018
STATUS
approved