login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190819 Initial primes of 7 consecutive primes with consecutive gaps 2, 4, 6, 8, 10, 12. 12
128981, 665111, 2798921, 3992201, 5071667, 5093507, 5344247, 10732817, 11920367, 16197947, 16462541, 16655447, 16943471, 21456047, 25793897, 32634311, 34051007, 34864211, 35250431, 38585201, 39898757, 49584371, 50375861, 51867197, 54738767, 55793951 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Subsequence of A190817, a(1) = 128981 = A190817(6).

a(n) + 42 is the greatest term in the sequence of 7 consecutive primes with 6 consecutive gaps 2, 4, 6, 8, 10, 12. - Muniru A Asiru, Aug 10 2017

LINKS

Zak Seidov, Table of n, a(n) for n = 1..300

EXAMPLE

Prime(12073..12079) = {128981, 128983, 128987, 128993, 129001, 129011, 129023} with first differences {2, 4, 6, 8, 10, 12}.

MAPLE

N:=10^7: # to get all terms <= N.

Primes:=select(isprime, [seq(i, i=3..N+42, 2)]):

Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1],

Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]-Primes[t+4], Primes[t+6]-Primes[t+5] ]=[2, 4, 6, 8, 10, 12], [$1..nops(Primes)-6])]; # Muniru A Asiru, Aug 04 2017

MATHEMATICA

d = Differences[Prime[Range[1000000]]]; Prime[Flatten[Position[Partition[d, 6, 1], {2, 4, 6, 8, 10, 12}]]] (* T. D. Noe, May 23 2011 *)

Prime[SequencePosition[Differences[Prime[Range[34*10^5]]], {2, 4, 6, 8, 10, 12}][[All, 1]]] (* Harvey P. Dale, Feb 18 2022 *)

CROSSREFS

Cf. A078847, A190814, A190817, A190838.

Sequence in context: A235318 A151812 A224585 * A190838 A237072 A232122

Adjacent sequences:  A190816 A190817 A190818 * A190820 A190821 A190822

KEYWORD

nonn

AUTHOR

Zak Seidov, May 21 2011

EXTENSIONS

Additional cross references from Harvey P. Dale, May 10 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 30 15:50 EDT 2022. Contains 357106 sequences. (Running on oeis4.)