login
A190818
Expansion of e.g.f.: 1/(1-2*tanh(x)).
2
1, 2, 8, 44, 320, 2912, 31808, 405344, 5903360, 96722432, 1760811008, 35260703744, 770296217600, 18229999665152, 464622502289408, 12687528814751744, 369557965317079040, 11437129322496131072, 374778854976227115008, 12963259774166774841344, 471986702056014668103680
OFFSET
0,2
LINKS
FORMULA
E.g.f: 1/(1-2*tanh(x)).
a(n) ~ n! * 2^(n+2)/(3*(log(3))^(n+1)). - Vaclav Kotesovec, Jun 26 2013
MAPLE
E(x):=1/(1-2*tanh(x)):
a[0]:=E(x):
for n from 1 to 30 do a[n]:=diff(a[n-1], x) od:
x:=0:
seq(a[n], n=0..30);
MATHEMATICA
CoefficientList[Series[1/(1-2*Tanh[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
PROG
(PARI) x='x+O('x^66);
Vec(serlaplace(1/(1-2*tanh(x)))) /* Joerg Arndt, May 21 2011 */
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( 1/(1-2*Tanh(x)) ))); // G. C. Greubel, Dec 03 2023
(SageMath)
def A190818_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( 1/(1-2*tanh(x)) ).egf_to_ogf().list()
A190818_list(40) # G. C. Greubel, Dec 03 2023
CROSSREFS
Cf. A011782 (e.g.f. of 1/(1-tanh(x))).
Sequence in context: A123307 A293905 A244430 * A372156 A330444 A253949
KEYWORD
nonn
AUTHOR
Miklos Kristof, May 21 2011
STATUS
approved