login
A088356
G.f. = continued fraction: A(x)=1/(1-x^2-x/(1-x^2-x^2/(1-x^2-x^3/(1-x^2-x^4/(...))))).
0
1, 1, 2, 5, 9, 23, 48, 113, 254, 581, 1332, 3038, 6979, 15955, 36616, 83861, 192325, 440833, 1010769, 2317433, 5313413, 12183136, 27934106, 64050992, 146862260, 336745545
OFFSET
0,3
FORMULA
a(n) ~ c * d^n, where d = 2.292939416856637726528779361454081464436625188118... and c = 0.32921500882885362486932246832585218475672980... - Vaclav Kotesovec, Jul 01 2019
MATHEMATICA
nmax = 40; CoefficientList[Series[1/(1 - x^2 + ContinuedFractionK[-x^k, 1 - x^2, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 01 2019 *)
CROSSREFS
Sequence in context: A002935 A128266 A374244 * A246350 A192477 A288109
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 26 2003
STATUS
approved