The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A088358 a(n) equals sum of first n terms of A(x)^n for n>=1, with a(0)=1. 2
 1, 1, 3, 16, 127, 1321, 16680, 244518, 4049199, 74404069, 1498276873, 32764372213, 772675039936, 19541627299052, 527590805816280, 15146369004674536, 460804123171138079, 14811876349937896743, 501663013214822053815, 17858867621856721343253, 666744417234185576463077 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA G.f. satisfies: A(x) = 1 + x*B'(x)/(1 - B(x)) where B(x/A(x)) = x. - Paul D. Hanna, Nov 01 2013 EXAMPLE G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 127*x^4 + 1321*x^5 + 16680*x^6 +... The coefficients in A(x)^n begin: n=1: [1, 1,  3,  16,  127,  1321,  16680,  244518,  4049199, ...]; n=2: [1, 2,  7,  38,  295,  2992,  37020,  534386,  8745915, ...]; n=3: [1, 3, 12,  67,  513,  5088,  61716,  877053, 14181891, ...]; n=4: [1, 4, 18, 104,  791,  7696,  91582, 1281160, 20462071, ...]; n=5: [1, 5, 25, 150, 1140, 10916, 127565, 1756710, 27706465, ...]; n=6: [1, 6, 33, 206, 1572, 14862, 170761, 2315256, 36052245, ...]; n=7: [1, 7, 42, 273, 2100, 19663, 222432, 2970108, 45656093, ...]; n=8: [1, 8, 52, 352, 2738, 25464, 284024, 3736560, 56696823, ...]; n=9: [1, 9, 63, 444, 3501, 32427, 357186, 4632138, 69378300, ...]; ... where the initial terms are derived from the above coefficients like so: a(1) = 1 = 1; a(2) = 1 + 2 = 3; a(3) = 1 + 3 + 12 = 16; a(4) = 1 + 4 + 18 + 104 = 127; a(5) = 1 + 5 + 25 + 150 + 1140 = 1321; a(6) = 1 + 6 + 33 + 206 + 1572 + 14862 = 16680; ... RELATED EXPANSIONS. The series B(x) = Series_Reversion(x/A(x)) begins: B(x) = x + x^2 + 4*x^3 + 26*x^4 + 228*x^5 + 2477*x^6 + 31776*x^7 +... such that A(x) = 1 + x*B'(x)/(1 - B(x)); also, B(x) = Sum_{n>=1} b(n)*x^n where b(n) = [x^(n-1)] A(x)^n/n for n>=1: [1/1, 2/2, 12/3, 104/4, 1140/5, 14862/6, 222432/7, 3736560/8, ...]. PROG (PARI) {a(n)=local(A); if(n<2, n>=0, A=1+x; for(i=2, n, A+=x^i*subst(Pol((A+O(x^i))^i), x, 1)); polcoeff(A, n))} for(n=0, 25, print1(a(n), ", ")) (PARI) /* A(x) = 1 + x*B'(x)/(1 - B(x)) where B(x/A(x)) = x: */ {a(n)=local(A=1+x); for(i=1, n, B=serreverse(x/A+x*O(x^n)); A=1+x*deriv(B)/(1-B)); polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A233436. Sequence in context: A188805 A214645 A296535 * A082161 A264636 A208829 Adjacent sequences:  A088355 A088356 A088357 * A088359 A088360 A088361 KEYWORD nonn AUTHOR Michael Somos and Paul D. Hanna, Sep 27 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 00:32 EST 2020. Contains 331313 sequences. (Running on oeis4.)