login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088358
a(n) equals sum of first n terms of A(x)^n for n>=1, with a(0)=1.
4
1, 1, 3, 16, 127, 1321, 16680, 244518, 4049199, 74404069, 1498276873, 32764372213, 772675039936, 19541627299052, 527590805816280, 15146369004674536, 460804123171138079, 14811876349937896743, 501663013214822053815, 17858867621856721343253, 666744417234185576463077
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = 1 + x*B'(x)/(1 - B(x)) where B(x/A(x)) = x. - Paul D. Hanna, Nov 01 2013
a(n) ~ c * n! * n^alpha / LambertW(1)^n, where alpha = (1 + 3*LambertW(1))/(1 + 1/LambertW(1)) and c = 0.192874788982750074134074506494559... - Vaclav Kotesovec, Sep 13 2024
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 127*x^4 + 1321*x^5 + 16680*x^6 +...
The coefficients in A(x)^n begin:
n=1: [1, 1, 3, 16, 127, 1321, 16680, 244518, 4049199, ...];
n=2: [1, 2, 7, 38, 295, 2992, 37020, 534386, 8745915, ...];
n=3: [1, 3, 12, 67, 513, 5088, 61716, 877053, 14181891, ...];
n=4: [1, 4, 18, 104, 791, 7696, 91582, 1281160, 20462071, ...];
n=5: [1, 5, 25, 150, 1140, 10916, 127565, 1756710, 27706465, ...];
n=6: [1, 6, 33, 206, 1572, 14862, 170761, 2315256, 36052245, ...];
n=7: [1, 7, 42, 273, 2100, 19663, 222432, 2970108, 45656093, ...];
n=8: [1, 8, 52, 352, 2738, 25464, 284024, 3736560, 56696823, ...];
n=9: [1, 9, 63, 444, 3501, 32427, 357186, 4632138, 69378300, ...]; ...
where the initial terms are derived from the above coefficients like so:
a(1) = 1 = 1;
a(2) = 1 + 2 = 3;
a(3) = 1 + 3 + 12 = 16;
a(4) = 1 + 4 + 18 + 104 = 127;
a(5) = 1 + 5 + 25 + 150 + 1140 = 1321;
a(6) = 1 + 6 + 33 + 206 + 1572 + 14862 = 16680; ...
RELATED EXPANSIONS.
The series B(x) = Series_Reversion(x/A(x)) begins:
B(x) = x + x^2 + 4*x^3 + 26*x^4 + 228*x^5 + 2477*x^6 + 31776*x^7 +...
such that A(x) = 1 + x*B'(x)/(1 - B(x)); also,
B(x) = Sum_{n>=1} b(n)*x^n where b(n) = [x^(n-1)] A(x)^n/n for n>=1:
[1/1, 2/2, 12/3, 104/4, 1140/5, 14862/6, 222432/7, 3736560/8, ...].
PROG
(PARI) {a(n)=local(A); if(n<2, n>=0, A=1+x; for(i=2, n, A+=x^i*subst(Pol((A+O(x^i))^i), x, 1)); polcoeff(A, n))}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* A(x) = 1 + x*B'(x)/(1 - B(x)) where B(x/A(x)) = x: */
{a(n)=local(A=1+x); for(i=1, n, B=serreverse(x/A+x*O(x^n)); A=1+x*deriv(B)/(1-B)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A233436.
Sequence in context: A188805 A214645 A296535 * A082161 A264636 A208829
KEYWORD
nonn
AUTHOR
Michael Somos and Paul D. Hanna, Sep 27 2003
STATUS
approved