%I #6 Jul 01 2019 10:52:39
%S 1,1,2,5,9,23,48,113,254,581,1332,3038,6979,15955,36616,83861,192325,
%T 440833,1010769,2317433,5313413,12183136,27934106,64050992,146862260,
%U 336745545
%N G.f. = continued fraction: A(x)=1/(1-x^2-x/(1-x^2-x^2/(1-x^2-x^3/(1-x^2-x^4/(...))))).
%F a(n) ~ c * d^n, where d = 2.292939416856637726528779361454081464436625188118... and c = 0.32921500882885362486932246832585218475672980... - _Vaclav Kotesovec_, Jul 01 2019
%t nmax = 40; CoefficientList[Series[1/(1 - x^2 + ContinuedFractionK[-x^k, 1 - x^2, {k, 1, nmax}]), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 01 2019 *)
%K nonn
%O 0,3
%A _Paul D. Hanna_, Sep 26 2003