Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 29 2023 10:54:24
%S 1,0,1,1,2,5,9,23,49,120,279,682,1654,4079,10129,25277,63639,160685,
%T 408373,1041197,2666364,6850405,17657214,45644461,118303445,307385607,
%U 800463683,2088900834,5461793800,14306839474,37539357792,98655089606
%N G.f. satisfies: A(x) = x*Product_{n>=1} (1 + x*A(x)^n).
%C Related q-series identity (Euler):
%C Product_{n>=1} (1+x*q^n) = Sum_{n>=0} x^n*q^(n*(n+1)/2) / Product_{k=1..n} (1-q^k); here q=A(x).
%H Vaclav Kotesovec, <a href="/A192477/b192477.txt">Table of n, a(n) for n = 1..300</a>
%F G.f. satisfies: A(x) = x*Sum_{n>=0} x^n*A(x)^(n*(n+1)/2) / Product_{k=1..n} (1 - A(x)^k).
%F G.f. satisfies: A(x) = x*Sum_{n>=0} x^n*A(x)^(n*(3*n+1)/2) * (1 + x*A(x)^(2*n+1)) * Product_{k=1..n} (1 + x*A(x)^k)/(1 - A(x)^k) due to Sylvester's identity.
%F a(n) ~ c * d^n / n^(3/2), where d = 2.7572424362046888622202089939389819515998799032935772914495266456251... and c = 0.141814541288727417106640836565322805487015901140336362320896774237... - _Vaclav Kotesovec_, Sep 29 2023
%e G.f.: A(x) = x + x^3 + x^4 + 2*x^5 + 5*x^6 + 9*x^7 + 23*x^8 + 49*x^9 +...
%e The g.f. A = A(x) satisfies the relations:
%e A = x*(1 + x*A)*(1 + x*A^2)*(1 + x*A^3)*(1 + x*A^4)*...
%e A = x*(1 + x*A/(1-A) + x^2*A^3/((1-A)*(1-A^2)) + x^3*A^6/((1-A)*(1-A^2)*(1-A^3)) + x^4*A^10/((1-A)*(1-A^2)*(1-A^3)*(1-A^4)) +...)
%e A = x*(1+x*A) + x^2*A^2*(1+x*A^3)*(1+x*A)/(1-A) + x^3*A^7*(1+x*A^5)*(1+x*A)*(1+x*A^2)/((1-A)*(1-A^2)) + x^4*A^15*(1+x*A^7)*(1+x*A)*(1+x*A^2)*(1+x*A^3)/((1-A)*(1-A^2)*(1-A^3)) +...
%t nmax = 40; A[_] = 0; Do[A[x_] = x*Product[1 + x*A[x]^k, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; Rest[CoefficientList[A[x], x]] (* _Vaclav Kotesovec_, Sep 29 2023 *)
%t (* Calculation of constants {d,c}: *) {1/r, Sqrt[-s*((1 + r)*Log[1 - s] - Log[s] + (1 + r)*QPolyGamma[0, Log[-r]/Log[s], s]) / (2*Pi*r*Log[s] * Derivative[0, 2][QPochhammer][-r, s])]} /. FindRoot[{r*QPochhammer[-r, s] == s*(1 + r), r*Derivative[0, 1][QPochhammer][-r, s] == 1 + r}, {r, 1/3}, {s, 1/2}, WorkingPrecision -> 120] // Chop (* _Vaclav Kotesovec_, Sep 29 2023 *)
%o (PARI) {a(n) = my(A=x+x^2);for(i=1,n, A = x*prod(m=1,n,1+x*A^m +x*O(x^n)));polcoeff(A,n)}
%o for(n=0,35,print1(a(n),", "))
%o (PARI) {a(n) = my(A=x+x^2);for(i=1,n, A = x*sum(m=0,n,x^m*A^(m*(m+1)/2)/prod(k=1,m,1-A^k +x*O(x^n))));polcoeff(A,n)}
%o (PARI) {a(n) = my(A=x+x^2);for(i=1,n, A = x*sum(m=0,n,x^m*A^(m*(3*m+1)/2)*(1+x*A^(2*m+1))*prod(k=1, m, (1+x*A^k)/(1-A^k +x*O(x^n))))); polcoeff(A, n)}
%Y Cf. A145267, A192478.
%K nonn
%O 1,5
%A _Paul D. Hanna_, Jul 01 2011