The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182867 Triangle read by rows: row n gives coefficients in expansion of Product_{i=1..n} (x - (2i)^2), highest powers first. 2
 1, 1, -4, 1, -20, 64, 1, -56, 784, -2304, 1, -120, 4368, -52480, 147456, 1, -220, 16368, -489280, 5395456, -14745600, 1, -364, 48048, -2846272, 75851776, -791691264, 2123366400, 1, -560, 119392, -12263680, 633721088, -15658639360, 157294854144, -416179814400, 1, -816, 262752, -42828032, 3773223168, -177891237888, 4165906530304, -40683662475264, 106542032486400, 1, -1140, 527136, -127959680, 17649505536, -1400415544320, 61802667606016, -1390437378293760, 13288048674471936, -34519618525593600 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS These are scaled central factorial numbers (see the discussion in the Comments section of A008955). The coefficients in the expansion of Product_{i=1..n} (x - i^2) give A008955, and the coefficients in the expansion of Product_{i=1..n} (x - (2i+1)^2) give A008956. LINKS T. L. Curtright, D. B. Fairlie, C. K. Zachos, A compact formula for rotations as spin matrix polynomials, arXiv preprint arXiv:1402.3541, 2014 T. L. Curtright, T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arXiv:1408.0767, 2014. T. L. Curtright, More on Rotations as Spin Matrix Polynomials, arXiv preprint arXiv:1506.04648, 2015 EXAMPLE Triangle begins: 1 1, -4 1, -20, 64 1, -56, 784, -2304 1, -120, 4368, -52480, 147456 1, -220, 16368, -489280, 5395456, -14745600 1, -364, 48048, -2846272, 75851776, -791691264, 2123366400 1, -560, 119392, -12263680, 633721088, -15658639360, 157294854144, -416179814400 1, -816, 262752, -42828032, 3773223168, -177891237888, 4165906530304, -40683662475264, 106542032486400 1, -1140, 527136, -127959680, 17649505536, -1400415544320, 61802667606016, -1390437378293760, 13288048674471936, -34519618525593600 ... For example, for n=2, (x-4)(x-16) = x^2 - 20x + 64 => [1, -20, 64]. MAPLE Q:= n -> if n mod 2 = 0 then sort(expand(mul(x-4*i^2, i=1..n/2))); else sort(expand(mul(x-(2*i+1)^2, i=0..(n-1)/2))); fi; for n from 0 to 10 do t1:=eval(Q(2*n)); t1d:=degree(t1); t12:=y^t1d*subs(x=1/y, t1); t2:=seriestolist(series(t12, y, 20)); lprint(t2); od: CROSSREFS Cf. A008955, A008956. This triangle is formed from the even-indexed rows of A182971 (the odd-indexed rows give A008956). Sequence in context: A144354 A049352 A322218 * A182826 A144484 A121336 Adjacent sequences: A182864 A182865 A182866 * A182868 A182869 A182870 KEYWORD sign,tabl AUTHOR N. J. A. Sloane, Feb 01 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 25 16:18 EDT 2023. Contains 361528 sequences. (Running on oeis4.)