OFFSET
0,4
COMMENTS
From Table 4, right-hand side, of Gelineau and Zeng.
Essentially a row-reversal of A008956. - R. J. Mathar, May 20 2009
LINKS
Yoann Gelineau and Jiang Zeng, Combinatorial Interpretations of the Jacobi-Stirling Numbers, arXiv:0905.2899 [math.CO], May 2009.
W. Zhang, Some identities involving the Euler and the central factorial numbers, The Fibonacci Quarterly, Vol. 36, Number 2, May 1998.
FORMULA
a(n,k) = |v(n,k)| where v(n,k) = v(n-1,k-1) - (2n-1)^2*v(n-1,k); eq (4.2).
Let F(x) = 1/cos(x). Then (2*n)!*(1/cos(x))^(2*n+1) = Sum_{k=0..n} T(n,k)*F^(2*k)(x), where F^(r) denotes the r-th derivative of F(x) (Zhang 1998). An example is given below. - Peter Bala, Feb 06 2012
Given a (0, 0)-based triangle U we call the triangle [U(n, k), k=1..n step 2, n=1..len step 2] the 'odd subtriangle' of U. This triangle is the odd subtriangle of U(n, k) = n! * [x^(n-k)] [t^n] (t + sqrt(1 + t^2))^x, albeit with signed terms. See A182867 for the even subtriangle. - Peter Luschny, Mar 03 2024
EXAMPLE
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 9, 10, 1;
[3] 225, 259, 35, 1;
[4] 11025, 12916, 1974, 84, 1;
[5] 893025, 1057221, 172810, 8778, 165, 1;
[6] 108056025, 128816766, 21967231, 1234948, 28743, 286, 1;
.
For row 3: F(x) := 1/cos(x). Then 225*F(x) + 259*(d/dx)^2(F(x)) + 35*(d/dx)^4(F(x)) + (d/dx)^6(F(x)) = 720*(1/cos(x))^7, where F^(r) denotes the r-th derivative of F(x).
MAPLE
t := proc(n, k) option remember ; expand(x*mul(x+n/2-i, i=1..n-1)) ; coeftayl(%, x=0, k) ; end:
v := proc(n, k) option remember ; 4^(n-k)*t(2*n+1, 2*k+1) ; end:
A160563 := proc(n, k) abs(v(n, k)) ; end: for n from 0 to 10 do for k from 0 to n do printf("%d, ", A160563(n, k)) ; od: od: # R. J. Mathar, May 20 2009
# Using a bivariate generating function (albeit generating signed terms):
gf := (t + sqrt(1 + t^2))^x: ser := series(gf, t, 20):
ct := n -> coeff(ser, t, n): T := (n, k) -> n!*coeff(ct(n), x, k):
OddPart := (T, len) -> local n, k;
seq(print(seq(T(n, k), k = 1..n, 2)), n = 1..2*len, 2):
OddPart(T, 6); # Peter Luschny, Mar 03 2024
MATHEMATICA
t[_, 0] = 1; t[n_, n_] := t[n, n] = ((2*n - 1)!!)^2; t[n_, k_] := t[n, k] = (2*n - 1)^2*t[n - 1, k - 1] + t[n - 1, k];
T[n_, k_] := t[n, n - k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2017, after R. J. Mathar's comment *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Jonathan Vos Post, May 19 2009
EXTENSIONS
Extended by R. J. Mathar, May 20 2009
STATUS
approved