The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158286 Triangle T(n, k) = coefficients of p(n, x), where p(n, x) = (-1)^n*(1+x)*((n+1)^2 +x)^(n-1), p(0, x) = 1, and p(1, x) = -1-x, read by rows. 2
 1, -1, -1, 9, 10, 1, -256, -288, -33, -1, 15625, 17500, 1950, 76, 1, -1679616, -1866240, -194400, -7920, -145, -1, 282475249, 311299254, 30000495, 1200500, 24255, 246, 1, -68719476736, -75161927680, -6694109184, -256901120, -5304320, -61824, -385, -1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS G. C. Greubel, Rows n = 0..50 of the triangle, flattened FORMULA T(n, k) = coefficients of the characteristic polynomials from the matrix defined by M = M_{0} * M_{1} where M_{0} = (m0_{i,j}), m0_{j,j} = n, otherwise -1 and M_{1} = (m1_{i,j}), m1_{j,j} = -n, otherwise 1. T(n, k) = coefficients of p(n, x), where p(n, x) = (-1)^n*(1+x)*((n+1)^2 +x)^(n-1), p(0, x) = 1, and p(1, x) = -1-x. - G. C. Greubel, May 14 2021 EXAMPLE Triangle begins as:              1;             -1,           -1;              9,           10,           1;           -256,         -288,         -33,         -1;          15625,        17500,        1950,         76,        1;       -1679616,     -1866240,     -194400,      -7920,     -145,     -1;      282475249,    311299254,    30000495,    1200500,    24255,    246,    1;   -68719476736, -75161927680, -6694109184, -256901120, -5304320, -61824, -385, -1; MATHEMATICA (* First program *) M0[n_]:= Table[If[m==k, n, -1], {k, 1, n}, {m, 1, n}]; M1[n_]:= Table[If[m==k, -n, 1], {k, 1, n}, {m, 1, n}]; M[n_]:= M0[n].M1[n]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 10}]]//Flatten (* modified by G. C. Greubel, May 14 2021 *) (* Second program *) f[n_]:= If[n<2, (-1)^n*(1+n*x), (-1)^n*(1+x)*((n+1)^2 +x)^(n-1)]; T[n_, k_]:= SeriesCoefficient[f[n], {x, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 14 2021 *) PROG (Sage) def p(n, x): return (-1)^n*(1 + n*x) if (n<2) else (-1)^n*(1+x)*((n+1)^2 +x)^(n-1) def T(n): return ( p(n, x) ).full_simplify().coefficients(sparse=False) flatten([T(n) for n in (0..10)]) # G. C. Greubel, May 14 2021 CROSSREFS Cf. A158285. Sequence in context: A109409 A262551 A160563 * A126839 A341818 A034058 Adjacent sequences:  A158283 A158284 A158285 * A158287 A158288 A158289 KEYWORD sign,tabl,less AUTHOR Roger L. Bagula, Mar 15 2009 EXTENSIONS Edited by G. C. Greubel, May 14 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 16:28 EDT 2021. Contains 346439 sequences. (Running on oeis4.)