OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = coefficients of the characteristic polynomials from the matrix defined by M = (m_{i,j}), m_{j,j} = -1, else 1.
T(n, k) = coefficients of p(n, x), where p(n, x) = (-1)^n*(x+2-n)*(x+2)^(n-1), p(0, x) = 1, and p(1, x) = -1-x. - G. C. Greubel, May 14 2021
EXAMPLE
Triangle begins as:
1;
-1, -1;
0, 2, 1;
4, 0, -3, -1;
-16, -16, 0, 4, 1;
48, 80, 40, 0, -5, -1;
-128, -288, -240, -80, 0, 6, 1;
320, 896, 1008, 560, 140, 0, -7, -1;
-768, -2560, -3584, -2688, -1120, -224, 0, 8, 1;
1792, 6912, 11520, 10752, 6048, 2016, 336, 0, -9, -1;
-4096, -17920, -34560, -38400, -26880, -12096, -3360, -480, 0, 10, 1;
MATHEMATICA
(* First program *)
M[n_]:= Table[If[k==m, -1, 1], {k, 0, n}, {m, 0, n}];
Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 0, 10}]]//Flatten (* modified by G. C. Greubel, May 14 2021 *)
(* Second program *)
f[n_]:= If[n<2, (-1)^n*(1+n*x), (-1)^n*(x+2-n)*(x+2)^(n-1)];
T[n_, k_]:= SeriesCoefficient[f[n], {x, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 14 2021 *)
PROG
(Sage)
def p(n, x): return (-1)^n*(1 + n*x) if (n<2) else (-1)^n*(2-n+x)*(2+x)^(n-1)
def T(n): return ( p(n, x) ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (0..10)]) # G. C. Greubel, May 14 2021
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Mar 15 2009
EXTENSIONS
Edited by G. C. Greubel, May 14 2021
STATUS
approved