login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109409
Coefficients of polynomials triangular sequence produced by removing primes from the odd numbers in A028338.
0
1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 9, 10, 1, 0, 0, 0, 0, 9, 10, 1, 0, 0, 0, 0, 0, 9, 10, 1, 0, 0, 0, 0, 0, 135, 159, 25, 1, 0, 0, 0, 0, 0, 0, 135, 159, 25, 1, 0, 0, 0, 0, 0, 0, 0, 135, 159, 25, 1, 0, 0, 0, 0, 0, 0, 0, 2835, 3474, 684, 46, 1
OFFSET
1,19
COMMENTS
The row sums also appear to be new: b = Flatten[Join[{{1}}, Table[Apply[Plus, Abs[CoefficientList[Product[x + g[n], {n, 0, m}], x]]], {m, 0, 10}]]] {1, 2, 2, 2, 2, 20, 20, 20, 320, 320, 320, 7040} Since the row sum of A028338 is the double factorial A000165: this result seems to be a factorization of the double factorial numbers by relatively sparse nonprime odd numbers. It might be better to reverse the order of the coefficients to get the higher powers first.
FORMULA
p[n]=Product[If[PrimeQ[2*n+1]==false,x+(2*n+1),x] a(n) =CoefficientList[p[n],x]
EXAMPLE
{1},
{1, 1},
{0, 1, 1},
{0, 0, 1, 1},
{0, 0, 0, 1, 1},
{0, 0, 0, 9, 10, 1},
{0, 0, 0, 0, 9, 10, 1},
{0, 0, 0, 0, 0, 9, 10, 1}
MATHEMATICA
a = Join[{{1}}, Table[CoefficientList[Product[x + g[n], {n, 0, m}], x], {m, 0, 10}]]; Flatten[a]
CROSSREFS
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, May 19 2007
STATUS
approved