login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A160564
Sum of products of factorials of parts times the factorial of the number of parts in all integer partitions of n.
1
1, 1, 4, 16, 80, 420, 2592, 17352, 132240, 1117200, 10559040, 110276352, 1268640000, 15923168640, 216767367936, 3178157607936, 49918919122944, 835744605027840, 14852897362759680, 279172076525153280, 5531978038112409600, 115241366146485749760
OFFSET
0,3
COMMENTS
Take each Ferrers diagram of the partitions of n, label the cells within each row and then linearly order the rows.
LINKS
EXAMPLE
a(3) = 16 because the partitions of 3 can be so ordered in 16 ways: 3 (6); 2,1 (4); 1,1,1 (6).
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
add(b(n-i*j, i-1, p+j)*i!^j, j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..23); # Alois P. Heinz, Oct 02 2017
MATHEMATICA
p = Table[Map[Function[n, Apply[Times, n! ]], Partitions[i]], {i, 0, 20}]; q = Table[Map[Function[n, Length[n]! ], Partitions[i]], {i, 0, 20}]; Map[Function[n, Apply[Plus, n]], p*q]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, May 19 2009
STATUS
approved