login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091885
Triangle T(n,k) defined by the generating function cosh(sqrt(y)*arcsin(x)) + sqrt(y)*sinh(sqrt(y)*arcsin(x)) - 1 = Sum_{n>=1} Sum_{k=1..n} T(n,k)*y^k *x^n/n!.
2
1, 1, 1, 1, 4, 1, 9, 10, 1, 64, 20, 1, 225, 259, 35, 1, 2304, 784, 56, 1, 11025, 12916, 1974, 84, 1, 147456, 52480, 4368, 120, 1, 893025, 1057221, 172810, 8778, 165, 1, 14745600, 5395456, 489280, 16368, 220, 1, 108056025, 128816766, 21967231, 1234948, 28743
OFFSET
1,5
COMMENTS
Row sums are equal to A006228(n). This is sequence A121408 without the intertwining zeros. - Emeric Deutsch, Jul 28 2006
This number triangle corresponds to the coefficients of the polynomial of the denominator of Fourier cosine coefficients for functions of the form sin(x)^(2*k) for integer n. For example (k=5), evaluating Integrate(cos(n*x)*sin(x)^10,{x,-Pi,Pi}), we have -((7257600*sin(n*Pi)))/(-14745600*n + 5395456*n^3 - 489280*n^5 + 16368*n^7 - 220*n^9 + n^11)); note the sequence of the coefficients of the polynomial of the denominator: -14745600, 5395456, -489280, 16368, -220, 1. - John M. Campbell, May 28 2011
FORMULA
E.g.f.: cosh(sqrt(y)*arcsin(x))+sqrt(y)*sinh(sqrt(y)*arcsin(x))-1.
EXAMPLE
Triangle starts:
1;
1;
1, 1;
4, 1;
9, 10, 1;
64, 20, 1;
225, 259, 35, 1;
MAPLE
G:=cosh(sqrt(y)*arcsin(x))+sqrt(y)*sinh(sqrt(y)*arcsin(x))-1: Gser:=simplify(series(G, x=0, 15)): for n from 1 to 13 do P[n]:=sort(expand(n!*coeff(Gser, x, n))) od: for n from 1 to 13 do seq(coeff(P[n], y, k), k=1..ceil(n/2)) od; # yields sequence in triangular form # Emeric Deutsch, Jul 28 2006
MATHEMATICA
m = 14; (* number of rows *)
T = Rest /@ Rest[CoefficientList[#, y]& /@ (CoefficientList[Cosh[Sqrt[y]* ArcSin[x]] + Sqrt[y]*Sinh[Sqrt[y]*ArcSin[x]] - 1 + O[x]^(m + 1), x]* Range[0, m]! // Simplify[#, y > 0]&)];
Flatten[T] (* Jean-François Alcover, Sep 27 2021 *)
CROSSREFS
Cf. A006228.
Cf. A121408.
Sequence in context: A067015 A179193 A158199 * A069606 A344109 A193580
KEYWORD
nonn,tabf,easy
AUTHOR
Karol A. Penson, Feb 08 2004
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
STATUS
approved