The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182864 a(n) is the smallest number such that a(n)^2 +1 = (a(n-1)^2 + 1)*q(n) where a(0)=0 and q(n) is a sequence of increasing prime numbers. 0
 0, 1, 3, 13, 123, 2903, 3373867, 895293820337 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS EXAMPLE a(0) = 0; a(1) = 1 because a(1)^2+1 = (0^2 + 1)*2 = 2; a(2) = 3 because a(2)^2 + 1 = (1^2 + 1)*5 = 2*5; a(3) = 13 because a(3)^2 + 1 = (3^2+1)*17 =2*5*17; a(4) = 123 because 123^2 + 1 = (13^2 + 1)*89 = 2*5*17*89; a(5) = 2903 because 2903^2 + 1 = (123^2+1)*557 = 2*5*17*89*557; a(6) = 3373867 because 3373867^2+1 = 2 * 5 * 17 * 89 * 557 * 1350709. MAPLE with(numtheory):nn:=100000:T:=array(1..nn):k:=1: for x from 1 to nn do: p:=4*x+1:if type(p, prime)=true then T[k]:=p:k:=k+1:else fi:od:pp:=2:for u from 1 to k do:id:=0:for x from 1 to nn while(id=0) do:y:=x^2+1:z:=pp*T[u]:if y=z then id:=1:print(x):else fi:od:if id=1 then pp:=y:else fi:od: MATHEMATICA a[0] = 0; a[1] = 1; lst = {2}; a[n_] := a[n] = (s = 1 + a[n - 1]^2; p = NextPrime[lst[[-1]]]; While[q = Sqrt[p*s - 1]; ! IntegerQ@ q, p = NextPrime@ p]; AppendTo[lst, p]; q) (* Robert G. Wilson v, Feb 06 2011 *) CROSSREFS Sequence in context: A191955 A241458 A302861 * A208590 A228648 A161677 Adjacent sequences: A182861 A182862 A182863 * A182865 A182866 A182867 KEYWORD nonn,hard AUTHOR Michel Lagneau, Feb 01 2011 EXTENSIONS a(7) from Donovan Johnson, Feb 11 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 02:12 EST 2023. Contains 360082 sequences. (Running on oeis4.)