login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228648
G.f.: exp( Sum_{n>=1} A001609(n^2)*x^n/n ), where the l.g.f. of A001609 is -log(1-x-x^3).
2
1, 1, 3, 13, 128, 2974, 161048, 19632276, 5284440413, 3112165670205, 3990553641147871, 11107142249379896577, 66971338268043285905138, 873496931276771661395863398, 24617613776054408956962658439353, 1497874647146694311608664496205734267, 196633628592570082430451891781759097556806
OFFSET
0,3
COMMENTS
A001609 forms the logarithmic derivative of Narayana's cows sequence A000930.
FORMULA
Logarithmic derivative yields A228647.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 128*x^4 + 2974*x^5 + 161048*x^6 +...
where
log(A(x)) = x + 5*x^2/2 + 31*x^3/3 + 453*x^4/4 + 14131*x^5/5 + 946781*x^6/6 + 136250983*x^7/7 +...+ A001609(n^2)*x^n/n +...
PROG
(PARI) {A001609(n)=n*polcoeff(-log(1-x-x^3 +x*O(x^n)), n)}
{a(n)=polcoeff(exp(sum(m=1, n+1, A001609(m^2)*x^m/m)+x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 28 2013
STATUS
approved