The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182864 a(n) is the smallest number such that a(n)^2 +1 = (a(n-1)^2 + 1)*q(n) where a(0)=0 and q(n) is a sequence of increasing prime numbers. 0

%I

%S 0,1,3,13,123,2903,3373867,895293820337

%N a(n) is the smallest number such that a(n)^2 +1 = (a(n-1)^2 + 1)*q(n) where a(0)=0 and q(n) is a sequence of increasing prime numbers.

%e a(0) = 0;

%e a(1) = 1 because a(1)^2+1 = (0^2 + 1)*2 = 2;

%e a(2) = 3 because a(2)^2 + 1 = (1^2 + 1)*5 = 2*5;

%e a(3) = 13 because a(3)^2 + 1 = (3^2+1)*17 =2*5*17;

%e a(4) = 123 because 123^2 + 1 = (13^2 + 1)*89 = 2*5*17*89;

%e a(5) = 2903 because 2903^2 + 1 = (123^2+1)*557 = 2*5*17*89*557;

%e a(6) = 3373867 because 3373867^2+1 = 2 * 5 * 17 * 89 * 557 * 1350709.

%p with(numtheory):nn:=100000:T:=array(1..nn):k:=1: for x from 1 to nn do: p:=4*x+1:if

%p type(p, prime)=true then T[k]:=p:k:=k+1:else fi:od:pp:=2:for u from 1 to k do:id:=0:for

%p x from 1 to nn while(id=0) do:y:=x^2+1:z:=pp*T[u]:if y=z then id:=1:print(x):else

%p fi:od:if id=1 then pp:=y:else fi:od:

%t a[0] = 0; a[1] = 1; lst = {2}; a[n_] := a[n] = (s = 1 + a[n - 1]^2; p = NextPrime[lst[[-1]]]; While[q = Sqrt[p*s - 1]; ! IntegerQ@ q, p = NextPrime@ p]; AppendTo[lst, p]; q) (* _Robert G. Wilson v_, Feb 06 2011 *)

%K nonn,hard

%O 0,3

%A _Michel Lagneau_, Feb 01 2011

%E a(7) from _Donovan Johnson_, Feb 11 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 13:22 EDT 2023. Contains 361549 sequences. (Running on oeis4.)