login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177145
Expansion of e.g.f. arcsin(x).
12
1, 0, 1, 0, 9, 0, 225, 0, 11025, 0, 893025, 0, 108056025, 0, 18261468225, 0, 4108830350625, 0, 1187451971330625, 0, 428670161650355625, 0, 189043541287806830625, 0, 100004033341249813400625, 0, 62502520838281133375390625, 0, 45564337691106946230659765625, 0
OFFSET
1,5
COMMENTS
A001818 interspersed with zeros. - Joerg Arndt, Aug 31 2013
a(n) is the number of permutations of n-1 where all cycles have even length. For example, a(5)=9 and the permutations of 4 elements with only even cycles are (1,2)(3,4); (1,3)(2,4); (1,4)(2,3); (1,2,3,4); (1,2,4,3); (1,3,2,4); (1,3,4,2); (1,4,2,3); (1,4,3,2).
a(n) is the number of permutations on n - 1 elements where there are no cycles of even length and an even number of cycles of odd length. - N. Sato, Aug 29 2013
REFERENCES
L. Comtet and M. Fiolet, Sur les dérivées successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251.
LINKS
Muhammad Adam Dombrowski and Gregory Dresden, Areas Between Cosines, arXiv:2404.17694 [math.CO], 2024. See p. 11.
Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
FORMULA
E.g.f.: arcsin(x).
G.f.: Q(0)*x^2/(1+x) + x/(1+x), where Q(k) = 1 + (2*k + 1)^2 * x * (1 + x * Q(k+1)); - Sergei N. Gladkovskii, May 10 2013 [Edited by Michael Somos, Oct 07 2013]
E.g.f of a(n+1), n >= 0, is 1/sqrt(1 - x^2). - N. Sato, Aug 29 2013
If n is odd, a(n) ~ 2*n^(n-1) / exp(n). - Vaclav Kotesovec, Oct 05 2013
E.g.f.: arcsin(x) = x + x^3/(T(0)-x^2), where T(k) = 4*k^2*(1+x^2) + 2*k*(5+2*x^2) +6 + x^2 - 2*x^2*(k+1)*(2*k+3)^3/T(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
a(n) = (n-1)! - A087137(n-1). - Anton Zakharov, Oct 18 2016
From Peter Bala, Aug 09 2024: (Start)
a(2*n+1) = (2*n - 1)!!^2 = A001147(n)^2.
a(n) = (n - 2)^2 * a(n-2) with a(1) = 1 and a(2) = 0. (End)
EXAMPLE
1 is in the sequence because, for k=1, f'(x) = 1/sqrt(1-x^2), and f'(0) = 1.
G.f. = x + x^3 + 9*x^5 + 225*x^7 + 11025*x^9 + 893025*x^11 + ...
MAPLE
n0:= 30: T:=array(1..n0+1): f:=x->arcsin(x):for n from 1 to n0 do:T[n]:=(D(f)(0)):f:=D(f):od: print(T):
MATHEMATICA
a[ n_] := If[ n < 1, 0, If[ EvenQ[n], 0, (n - 2)!!^2]]; (* Michael Somos, Oct 07 2013 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ ArcSin[x], {x, 0, n}]]; (* Michael Somos, Oct 07 2013 *)
PROG
(PARI) Vec( serlaplace( sqrt( 1/(1-x^2) + O(x^55) ) ) )
(PARI) {a(n) = if( n<2, n==1, (n-2)^2 * a(n-2))}; /* Michael Somos, Oct 07 2013 */
(PARI) a(n) = if( n<0, 0, n! * polcoeff( asin(x + x * O(x^n)), n)); /* Michael Somos, Oct 07 2013 */
CROSSREFS
Alternate terms are A001818. - N. Sato, May 13 2010
Cf. A087137.
Sequence in context: A339488 A157309 A215484 * A178912 A191564 A067479
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, May 03 2010
STATUS
approved