OFFSET
0,3
COMMENTS
We have a(n)=C(n;3), where C(n;d), n=1,2,..., d in C, denote one of the quasi-Fibonacci numbers defined in the comments to A121449 and in the Witula-Slota-Warzynski paper. Its conjugate sequences A(n;3) and B(n;3) are discussed in A121458 and A215492, respectively. Similarly as in A121458, we deduce that each of the elements a(3*n), a(3*n+1), a(3*n+2) are divisible by 9*7^n for every n=0,1,... . Some additional facts connecting all three sequences a(n), A121458, and A215492 are given in the comments to A121458.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
R. Witula, D. Slota and A. Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
Index entries for linear recurrences with constant coefficients, signature (0, 21, 7).
FORMULA
a(n) = (1/7)*((c(2)-c(4))*(1+3*c(1))^n + (c(4)-c(1))*(1+3*c(2))^n + (c(1)-c(2))*(1+3*c(4))^n), where c(j):=2*cos(2*Pi*j/7) (for the proof see formula (3.17) for d=3 in the Witula-Slota-Warzynski paper).
G.f.: 9*x^2/(1-21*x^2-7*x^3).
EXAMPLE
We have a(5)=7*a(2), a(4)=21*a(2), a(4)=3*a(5), a(6)=21*a(4), a(7)=14*a(4), 3*a(7)=2*a(6), a(8)-a(9)=7*a(5), a(9)=21*a(6), 2*a(9)=63*a(7), a(12)=455*a(9) - especially the values and the relations connecting with a(8) and a(9) are very attractive.
MATHEMATICA
LinearRecurrence[{0, 21, 7}, {0, 0, 9}, 50]
CoefficientList[Series[9x^2/(1-21x^2-7x^3), {x, 0, 30}], x] (* Harvey P. Dale, Jul 06 2021 *)
PROG
(PARI) x='x+O('x^30); concat([0, 0], Vec(9*x^2/(1-21*x^2-7*x^3))) \\ G. C. Greubel, Apr 19 2018
(Magma) I:=[0, 0, 9]; [n le 3 select I[n] else 21*Self(n-2) +7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 19 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roman Witula, Aug 13 2012
STATUS
approved