

A215484


a(n) = 21*a(n2) + 7*a(n3), with a(0)=a(1)=0, a(2)=9.


3



0, 0, 9, 0, 189, 63, 3969, 2646, 83790, 83349, 1778112, 2336859, 37923795, 61520823, 812757708, 1557403848, 17498557629, 38394784764, 378371537145, 928780383447, 8214565773393, 22152988812402, 179007343925382, 522714725474193, 3914225144119836, 12230060642435727, 85857731104835907, 284230849499989119
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

We have a(n)=C(n;3), where C(n;d), n=1,2,..., d in C, denote one of the quasiFibonacci numbers defined in the comments to A121449 and in the WitulaSlotaWarzynski paper. Its conjugate sequences A(n;3) and B(n;3) are discussed in A121458 and A215492, respectively. Similarly as in A121458, we deduce that each of the elements a(3*n), a(3*n+1), a(3*n+2) are divisible by 9*7^n for every n=0,1,... . Some additional facts connecting all three sequences a(n), A121458, and A215492 are given in the comments to A121458.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000
R. Witula, D. Slota and A. Warzynski, QuasiFibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
Index entries for linear recurrences with constant coefficients, signature (0, 21, 7).


FORMULA

a(n) = (1/7)*((c(2)c(4))*(1+3*c(1))^n + (c(4)c(1))*(1+3*c(2))^n + (c(1)c(2))*(1+3*c(4))^n), where c(j):=2*cos(2*Pi*j/7) (for the proof see formula (3.17) for d=3 in the WitulaSlotaWarzynski paper).
G.f.: 9*x^2/(121*x^27*x^3).


EXAMPLE

We have a(5)=7*a(2), a(4)=21*a(2), a(4)=3*a(5), a(6)=21*a(4), a(7)=14*a(4), 3*a(7)=2*a(6), a(8)a(9)=7*a(5), a(9)=21*a(6), 2*a(9)=63*a(7), a(12)=455*a(9)  especially the values and the relations connecting with a(8) and a(9) are very attractive.


MATHEMATICA

LinearRecurrence[{0, 21, 7}, {0, 0, 9}, 50]
CoefficientList[Series[9x^2/(121x^27x^3), {x, 0, 30}], x] (* Harvey P. Dale, Jul 06 2021 *)


PROG

(PARI) x='x+O('x^30); concat([0, 0], Vec(9*x^2/(121*x^27*x^3))) \\ G. C. Greubel, Apr 19 2018
(MAGMA) I:=[0, 0, 9]; [n le 3 select I[n] else 21*Self(n2) +7*Self(n3): n in [1..30]]; // G. C. Greubel, Apr 19 2018


CROSSREFS

Sequence in context: A057403 A339488 A157309 * A177145 A178912 A191564
Adjacent sequences: A215481 A215482 A215483 * A215485 A215486 A215487


KEYWORD

nonn,easy


AUTHOR

Roman Witula, Aug 13 2012


STATUS

approved



