OFFSET
0,2
COMMENTS
The term 'Heron's polynomial' is not standard but inspired by Roger Alperin's proof of Heron's formula.
REFERENCES
Reuben Hersh, Experiencing mathematics: What do we do, when we do mathematics?, p. 107, 2014.
LINKS
Roger C. Alperin, Heron's area formula, The College Mathematics Journal 18(2), 137-138, 1987.
Shalosh B. Ekhad and Doron Zeilberger, Two one-line proofs of Heron's Formula, Jan. 2014; Local copy
Mark Levi, A simple derivation of Heron’s formula, SIAM news, December 2020.
Wikipedia, Heron's formula.
Wikipedia, Heronian triangle.
FORMULA
a(n) = 3*n^4 - 12*n^2.
a(n) = [x^n] 9*x*(x + 1)*(x^2 - 6*x + 1)/(x - 1)^5.
a(2*n)/(24)^2 = binomial(n^2, 2)/6 = A002415(n) for n >= 0.
MAPLE
seq(3*n^2*(n^2 - 4), n=0..34);
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Dec 16 2020
STATUS
approved