The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A339488 a(n) = H(n-1, n, n+1) where H(a, b, c) = (a + b + c)*(a + b - c)*(b + c - a)*(c + a - b) is Heron's polynomial. 1
 0, -9, 0, 135, 576, 1575, 3456, 6615, 11520, 18711, 28800, 42471, 60480, 83655, 112896, 149175, 193536, 247095, 311040, 386631, 475200, 578151, 696960, 833175, 988416, 1164375, 1362816, 1585575, 1834560, 2111751, 2419200, 2759031, 3133440, 3544695, 3995136 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The term 'Heron's polynomial' is not standard but inspired by Roger Alperin's proof of Heron's formula. REFERENCES Reuben Hersh, Experiencing mathematics: What do we do, when we do mathematics?, p. 107, 2014. LINKS Roger C. Alperin, Heron's area formula, The College Mathematics Journal 18(2), 137-138, 1987. Shalosh B. Ekhad and Doron Zeilberger, Two one-line proofs of Heron's Formula, Jan. 2014; Local copy Mark Levi, A simple derivation of Heron’s formula, SIAM news, December 2020. Wikipedia, Heron's formula. Wikipedia, Heronian triangle. FORMULA a(n) = 3*n^4 - 12*n^2. a(n) = [x^n] 9*x*(x + 1)*(x^2 - 6*x + 1)/(x - 1)^5. a(2*n)/(24)^2 = binomial(n^2, 2)/6 = A002415(n) for n >= 0. MAPLE seq(3*n^2*(n^2 - 4), n=0..34); CROSSREFS Cf. A336900, A002415. Sequence in context: A222396 A222516 A057403 * A157309 A215484 A177145 Adjacent sequences:  A339485 A339486 A339487 * A339489 A339490 A339491 KEYWORD sign AUTHOR Peter Luschny, Dec 16 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 14:32 EDT 2021. Contains 345165 sequences. (Running on oeis4.)