Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Sep 08 2022 08:46:03
%S 0,0,9,0,189,63,3969,2646,83790,83349,1778112,2336859,37923795,
%T 61520823,812757708,1557403848,17498557629,38394784764,378371537145,
%U 928780383447,8214565773393,22152988812402,179007343925382,522714725474193,3914225144119836,12230060642435727,85857731104835907,284230849499989119
%N a(n) = 21*a(n-2) + 7*a(n-3), with a(0)=a(1)=0, a(2)=9.
%C We have a(n)=C(n;3), where C(n;d), n=1,2,..., d in C, denote one of the quasi-Fibonacci numbers defined in the comments to A121449 and in the Witula-Slota-Warzynski paper. Its conjugate sequences A(n;3) and B(n;3) are discussed in A121458 and A215492, respectively. Similarly as in A121458, we deduce that each of the elements a(3*n), a(3*n+1), a(3*n+2) are divisible by 9*7^n for every n=0,1,... . Some additional facts connecting all three sequences a(n), A121458, and A215492 are given in the comments to A121458.
%H G. C. Greubel, <a href="/A215484/b215484.txt">Table of n, a(n) for n = 0..1000</a>
%H R. Witula, D. Slota and A. Warzynski, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Slota/slota57.html">Quasi-Fibonacci Numbers of the Seventh Order</a>, J. Integer Seq., 9 (2006), Article 06.4.3.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0, 21, 7).
%F a(n) = (1/7)*((c(2)-c(4))*(1+3*c(1))^n + (c(4)-c(1))*(1+3*c(2))^n + (c(1)-c(2))*(1+3*c(4))^n), where c(j):=2*cos(2*Pi*j/7) (for the proof see formula (3.17) for d=3 in the Witula-Slota-Warzynski paper).
%F G.f.: 9*x^2/(1-21*x^2-7*x^3).
%e We have a(5)=7*a(2), a(4)=21*a(2), a(4)=3*a(5), a(6)=21*a(4), a(7)=14*a(4), 3*a(7)=2*a(6), a(8)-a(9)=7*a(5), a(9)=21*a(6), 2*a(9)=63*a(7), a(12)=455*a(9) - especially the values and the relations connecting with a(8) and a(9) are very attractive.
%t LinearRecurrence[{0,21,7}, {0,0,9}, 50]
%t CoefficientList[Series[9x^2/(1-21x^2-7x^3),{x,0,30}],x] (* _Harvey P. Dale_, Jul 06 2021 *)
%o (PARI) x='x+O('x^30); concat([0,0], Vec(9*x^2/(1-21*x^2-7*x^3))) \\ _G. C. Greubel_, Apr 19 2018
%o (Magma) I:=[0,0,9]; [n le 3 select I[n] else 21*Self(n-2) +7*Self(n-3): n in [1..30]]; // _G. C. Greubel_, Apr 19 2018
%K nonn,easy
%O 0,3
%A _Roman Witula_, Aug 13 2012