login
A177142
Expansion of x*(1+x)*(1+5*x-8*x^2)/(1-5*x-30*x^2+69*x^3+31*x^4-22*x^5).
0
1, 11, 82, 663, 4985, 38838, 295693, 2280891, 17455474, 134206975, 1029005569, 7902607014, 60631980773, 465460334227, 3572034591170, 27418033614407, 210428708695817, 1615118798336534, 12396117988189821, 95143198709992875
OFFSET
1,2
REFERENCES
S. Kitaev, A. Burstein and T. Mansour. Counting independent sets in certain classes of (almost) regular graphs, Pure Mathematics and Applications (PU.M.A.) 19 (2008), no. 2-3, 17-26.
FORMULA
G.f.: x*(1+x)*(1+5*x-8*x^2)/(1-5*x-30*x^2+69*x^3+31*x^4-22*x^5).
MATHEMATICA
CoefficientList[Series[x(1+x)(1+5x-8x^2)/(1-5x-30x^2+69x^3+31x^4-22x^5), {x, 0, 30}], x] (* or *) LinearRecurrence[{5, 30, -69, -31, 22}, {0, 1, 11, 82, 663}, 30] (* Harvey P. Dale, May 06 2022 *)
CROSSREFS
Sequence in context: A029887 A026871 A123367 * A129388 A030692 A294831
KEYWORD
nonn,easy
AUTHOR
Signy Olafsdottir (signy06(AT)ru.is), May 03 2010
STATUS
approved