OFFSET
1,2
FORMULA
a(n) = (-1)^(n-1)*n^(n-2)*(n+1)*(n+2)*((n+3)^n-(n+1)^n)/(6*2^n).
EXAMPLE
a(4) = determinant of 4 X 4 matrix
| 1, 3, 6, 10|
|10, 1, 3, 6|
| 6, 10, 1, 3|
| 3, 6, 10, 1|
= -8880.
MATHEMATICA
tri[n_] := n (n + 1)/2; f[n_] := Det[ Table[ RotateLeft[ tri@ Range@ n, -j], {j, 0, n - 1}]]; Array[f, 15] (* or *)
f[n_] := (-1)^n*n^(n - 2)(n + 1)(n + 2)((n + 1)^n - (n + 3)^n)/(3*2^(n + 1)); Array[f, 15] (* Robert G. Wilson v, Aug 31 2014 *)
PROG
(PARI) A177147(n)={ (-1)^(n-1)*n^(n-2)*(n+1)*(n+2)*((n+3)^n-(n+1)^n)/(6*2^n) ; }
{ for(n=1, 20, print1(A177147(n)", ") ; ) ; } \\ R. J. Mathar, May 28 2010
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Missouri State University Problem-Solving Group (MSUPSG(AT)MissouriState.edu), May 03 2010
EXTENSIONS
More terms from R. J. Mathar, May 28 2010
Two more terms from Robert G. Wilson v, Aug 31 2014
STATUS
approved