login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177147 a(n) = determinant of n X n circulant matrix whose first row consists of the first n positive triangular numbers. 1

%I

%S 1,-8,190,-8880,683375,-78206688,12452171844,-2631354777600,

%T 712425472573815,-240455417915625000,98981390235327670642,

%U -48810267466347374088192,28406348214047496113497895,-19264981823338548859573191040,15061032335471422549306640625000

%N a(n) = determinant of n X n circulant matrix whose first row consists of the first n positive triangular numbers.

%F a(n) = (-1)^(n-1)*n^(n-2)*(n+1)*(n+2)*((n+3)^n-(n+1)^n)/(6*2^n).

%e a(4) = determinant of 4 X 4 matrix

%e | 1, 3, 6, 10|

%e |10, 1, 3, 6|

%e | 6, 10, 1, 3|

%e | 3, 6, 10, 1|

%e = -8880.

%t tri[n_] := n (n + 1)/2; f[n_] := Det[ Table[ RotateLeft[ tri@ Range@ n, -j], {j, 0, n - 1}]]; Array[f, 15] (* or *)

%t f[n_] := (-1)^n*n^(n - 2)(n + 1)(n + 2)((n + 1)^n - (n + 3)^n)/(3*2^(n + 1)); Array[f, 15] (* _Robert G. Wilson v_, Aug 31 2014 *)

%o (PARI) A177147(n)={ (-1)^(n-1)*n^(n-2)*(n+1)*(n+2)*((n+3)^n-(n+1)^n)/(6*2^n) ; }

%o { for(n=1,20, print1(A177147(n)",") ; ) ; } \\ _R. J. Mathar_, May 28 2010

%Y Cf. A118705.

%K easy,sign

%O 1,2

%A Missouri State University Problem-Solving Group (MSUPSG(AT)MissouriState.edu), May 03 2010

%E More terms from _R. J. Mathar_, May 28 2010

%E Two more terms from _Robert G. Wilson v_, Aug 31 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 22:00 EDT 2021. Contains 348119 sequences. (Running on oeis4.)