The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177146 n-th derivative of arctan(x) at x = 1, n >= 4. 1
 0, -3, 15, -45, 0, 1260, -11340, 56700, 0, -3742200, 48648600, -340540200, 0, 40864824000, -694702008000, 6252318072000, 0, -1187940433680000, 24946749107280000, -274414240180080000, 0, 75738330289702080000, -1893458257242552000000, 24614957344153176000000, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,2 COMMENTS d^ny/dx^n = (((-1)^(n-1))*(n-1)!)*sin(n*arctan(1/x)) /(1+x^2)^(n/2) - (proof by recurrence). If n = 1, 2, 3, the values of the derivatives at x=1 are respectively 1/2, -1/2, 1/2. d^ny/dx^n = n!*sum(k=1..n, (binomial(n-1,k-1)*(-1)^(n-k)*x^(n-k)*(1+x^2)^(-n)*(-1)^((k-1)/2)*(1+(-1)^(k-1)))/(2*k)). - Vladimir Kruchinin, Apr 22 2011 LINKS Alois P. Heinz, Table of n, a(n) for n = 4..400 FORMULA a(n) = (((-1)^(n-1))*(n-1)!)*sin(n*arctan(1))/2^(n/2). a(n) = 2^(-n-1)*n!*sum(k=1..n, (((-1)^(k-1)+1)*(-1)^(n-k+(k-1)/2)*binomial(n-1,k-1))/k). - Vladimir Kruchinin, Apr 22 2011 abs(a(n)) = abs(integrate(x=0..infty, sin(x)*exp(-x)*x^(n-1))) (see Mathematica code below). - John M. Campbell, Jun 21 2011 E.g.f.: arctan(x+1). - Alois P. Heinz, Feb 14 2015 EXAMPLE a(5) = -3 because d^5y/dx^5 = 384*x^4/(1 + x^2)^5 - 288*x^2/(1 + x^2)^4 + 24/(1 + x^2)^3, and for x=1 we obtain 384/32 - 288/16 + 24/8 = -3. MAPLE # First program, with the formula: n0:= 50: T:=array(1..n0+1):for n from 1 to n0 do:T[n]:=(((-1)^(n-1))*(n-1) !)*sin(n*arctan(1)) /(2^(n/2)):od:print(T): # Second program, with the Maple instruction D(f): n0:= 50: T:=array(1..n0+1):f:=x->arctan(x):for n from 1 to n0 do:D(f): T[n]:=(D(f)(1)):f:=D(f):od: print(T): # third Maple program: a:= n-> n!*coeff(series(arctan(x+1), x, n+1), x, n): seq(a(n), n=4..40);  # Alois P. Heinz, Feb 14 2015 MATHEMATICA Table[Abs[Integrate[Sin[x]*E^(-x)*(x^(n - 1)), {x, 0, Infinity}]], {n, 4, 28}] (* John M. Campbell, Jun 21 2011 *) PROG (Maxima) a(n):=2^(-n-1)*n!*sum((((-1)^(k-1)+1)*(-1)^(n-k+(k-1)/2)*binomial(n-1, k-1))/k, k, 1, n); /* Vladimir Kruchinin, Apr 22 2011 */ CROSSREFS Cf. A005359 (n-th derivatives of arctan(x) at x = 0). Sequence in context: A101165 A127407 A196237 * A161400 A112810 A334078 Adjacent sequences:  A177143 A177144 A177145 * A177147 A177148 A177149 KEYWORD sign AUTHOR Michel Lagneau, May 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 14:43 EDT 2021. Contains 346273 sequences. (Running on oeis4.)