login
A380648
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-4*x)/(1 + x)^4 ).
2
1, 8, 188, 7816, 475096, 38289504, 3857806144, 467330651456, 66209818738176, 10747317030192640, 1967261819870112256, 400989528160028255232, 90087157573721153554432, 22119056538323287540637696, 5893098619063477612068864000, 1693364632974231188010697990144
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies A(x) = (1 + x*A(x))^4 * exp(4 * x * A(x)).
a(n) = 4 * n! * Sum_{k=0..n} (4*n+4)^(k-1) * binomial(4*n+4,n-k)/k!.
MATHEMATICA
nmax=16; CoefficientList[(1/x)InverseSeries[Series[x*Exp[-4*x]/(1 + x)^4, {x, 0, nmax}]], x]Range[0, nmax-1]! (* Stefano Spezia, Feb 06 2025 *)
PROG
(PARI) a(n) = 4*n!*sum(k=0, n, (4*n+4)^(k-1)*binomial(4*n+4, n-k)/k!);
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Feb 06 2025
STATUS
approved