OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} multinomial(k,k,k)/(k+1).
Recurrence: (n+2)*(n+3)*a(n+2)-(28*n^2+86*n+66)*a(n+1)+3*(3*n+5)*(3*n+4)*a(n)=0.
a(n) = hypergeometric(1/3,2/3;2;27)-(multinomial(n+1,n+1,n+1)/(n+2)) * hypergeometric[1,n+4/3,n+5/3;n+2,n+3;27).
a(n) = 0 (mod 2) and a(n) = 1 (mod 3), for all natural n.
G.f.: hypergeometric(1/3,2/3;2;27*t)/(1-t).
a(n) ~ 3^(3*n+7/2) / (52*Pi*n^2). - Vaclav Kotesovec, Oct 30 2016
MATHEMATICA
Table[Sum[Multinomial[k, k, k]/(k + 1), {k, 0, n}], {n, 0, 100}]
PROG
(Maxima) makelist(sum(multinomial_coeff(k, k, k)/(k+1), k, 0, n), n, 0, 12);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Oct 25 2016
STATUS
approved