login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277637
Partial sums of A007004.
0
1, 4, 34, 454, 7384, 133510, 2583958, 52468078, 1104191608, 23891534758, 528527606698, 11905777228618, 272269758961018, 6306419621308618, 147677930682023818, 3491114167267938298, 83217317955857060788, 1998209467779811473538, 48293984598611551487038, 1174012306200941229710038, 28689784424223599507417938
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} multinomial(k,k,k)/(k+1).
Recurrence: (n+2)*(n+3)*a(n+2)-(28*n^2+86*n+66)*a(n+1)+3*(3*n+5)*(3*n+4)*a(n)=0.
a(n) = hypergeometric(1/3,2/3;2;27)-(multinomial(n+1,n+1,n+1)/(n+2)) * hypergeometric[1,n+4/3,n+5/3;n+2,n+3;27).
a(n) = 0 (mod 2) and a(n) = 1 (mod 3), for all natural n.
G.f.: hypergeometric(1/3,2/3;2;27*t)/(1-t).
a(n) ~ 3^(3*n+7/2) / (52*Pi*n^2). - Vaclav Kotesovec, Oct 30 2016
MATHEMATICA
Table[Sum[Multinomial[k, k, k]/(k + 1), {k, 0, n}], {n, 0, 100}]
PROG
(Maxima) makelist(sum(multinomial_coeff(k, k, k)/(k+1), k, 0, n), n, 0, 12);
CROSSREFS
Cf. A007004.
Sequence in context: A071213 A052629 A151919 * A218674 A321264 A234291
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Oct 25 2016
STATUS
approved