|
|
A138308
|
|
a(1)=1. a(n) = smallest integer > a(n-1) that is coprime to n and is coprime to every (nonzero) exponent in the prime factorization of n.
|
|
3
|
|
|
1, 3, 4, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 23, 26, 27, 28, 29, 30, 31, 32, 35, 36, 37, 39, 41, 43, 45, 46, 47, 48, 49, 50, 53, 54, 55, 56, 59, 61, 67, 68, 71, 72, 73, 77, 79, 80, 83, 85, 87, 88, 89, 90, 91, 92, 95, 97, 99, 100, 101, 102, 103, 107, 109, 111, 113, 114, 115, 116
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
EXAMPLE
|
8 has the prime-factorization of 2^3. The smallest integer > a(7)=8 that is coprime to both 8 and 3 is 11. (9 is not coprime to 3. 10 is not coprime to 8.) So a(8)=11.
|
|
MAPLE
|
A138308 := proc(n) option remember; local pfs, a, p, works ; if n = 1 then 1; else pfs := ifactors(n)[2] ; for a from procname(n-1)+1 do works := true ; if gcd(a, n) > 1 then works := false; else for p in pfs do if gcd(a, op(2, p)) > 1 then works := false; fi; end do ; end if; if works then return a; end if ; end do; end if; end: seq(A138308(n), n=1..120) ; # R. J. Mathar, Oct 24 2009
|
|
MATHEMATICA
|
Fold[Append[#1, SelectFirst[Range[#1[[-1]] + 1, #1[[-1]] + 12], Function[k, AllTrue[Join[{#2}, FactorInteger[#2][[All, -1]] ], CoprimeQ[k, #] &]]]] &, {1}, Range[2, 69]] (* Michael De Vlieger, Oct 18 2017 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|