login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185328
Number of partitions of n with parts >= 8.
20
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 9, 10, 12, 13, 16, 17, 21, 23, 27, 30, 36, 39, 46, 51, 60, 66, 77, 85, 99, 110, 126, 140, 162, 179, 205, 228, 260, 289, 329, 365, 415, 461, 521, 579, 655, 726, 818, 909, 1022, 1134, 1273, 1411
OFFSET
0,17
COMMENTS
a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 8 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
By removing a single part of size 8, an A026801 partition of n becomes an A185328 partition of n - 8. Hence this sequence is essentially the same as A026801.
FORMULA
G.f.: Product_{m>=8} 1/(1-x^m).
a(n) = p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-7) + p(n-8) - p(n-10) - p(n-11) - 2*p(n-12) + 2*p(n-16) + p(n-17) + p(n-18) - p(n-20) - p(n-21) - p(n-23) + p(n-26) + p(n-27) - p(n-28) where p(n)=A000041(n). - Shanzhen Gao
This sequence is the Euler transformation of A185118.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 35*Pi^7 / (18*sqrt(2)*n^(9/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=0} x^(8*k) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 28 2020
G.f.: 1 + Sum_{n >= 1} x^(n+7)/Product_{k = 0..n-1} (1 - x^(k+8)). - Peter Bala, Dec 01 2024
MAPLE
N:= 100: # for a(0)..a(N)
g:= mul(1/(1-x^m), m=8..N):
S:= series(g, x, N+1):
seq(coeff(S, x, n), n=0..N); # Robert Israel, Dec 19 2017
MATHEMATICA
CoefficientList[Series[1/QPochhammer[x^8, x], {x, 0, 75}], x] (* G. C. Greubel, Nov 03 2019 *)
PROG
(PARI) my(x='x+O('x^70)); Vec(1/prod(m=0, 80, 1-x^(m+8))) \\ G. C. Greubel, Nov 03 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+8): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
(Sage)
def A185328_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/product((1-x^(m+8)) for m in (0..80)) ).list()
A185328_list(70) # G. C. Greubel, Nov 03 2019
CROSSREFS
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), this sequence (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
Sequence in context: A026826 A025151 A026801 * A210718 A027191 A122522
KEYWORD
nonn,easy
AUTHOR
Jason Kimberley, Jan 31 2012
STATUS
approved