OFFSET
0,12
COMMENTS
Triangle T(n,k), read by rows, given by (-1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
LINKS
G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
FORMULA
T(n,k) = T(n-1,k-1) - T(n-2,k), T(0,0) = 1, T(0,1) = -1, T(0,2) = 0.
G.f.: (1-x+x^2)/(1-y*x+x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A184334(n), A163805(n), A000007(n), A028310(n), A025169(n-1), A005320(n) (n>0) for x = -1, 0, 1, 2, 3, 4 respectively.
T(n,n) = 1, T(n+1,n) = -1, T(n+2,n) = -n, T(n+3,n) = n+1, T(n+4,n) = n(n+1)/2 = A000217(n).
T(2n,2k) = (-1)^(n-k) * A128908(n,k), T(2n+1,2k+1) = -T(2n+1,2k) = A129818(n,k), T(2n+2,2k+1) = (-1)*A053122(n,k). - Philippe Deléham, Feb 09 2012
EXAMPLE
Triangle begins:
1;
-1, 1;
0, -1, 1;
1, -1, -1, 1;
0, 2, -2, -1, 1;
-1, 1, 3, -3, -1, 1;
0, -3, 3, 4, -4, -1, 1;
1, -1, -6, 6, 5, -5, -1, 1;
0, 4, -4, -10, 10, 6, -6, -1, 1;
-1, 1, 10, -10, -15, 15, 7, -7, -1, 1;
0, -5, 5, 20, -20, -21, 21, 8, -8, -1, 1;
1, -1, -15, 15, 35, -35, -28, 28, 9, -9, -1, 1;
MATHEMATICA
CoefficientList[Series[CoefficientList[Series[(1 - x + x^2)/(1 - y*x + x^2), {x, 0, 10}], x], {y, 0, 10}], y] // Flatten (* G. C. Greubel, Jun 27 2017 *)
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Feb 08 2012
STATUS
approved