login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185331
Riordan array ((1-x+x^2)/(1+x^2), x/(1+x^2)).
1
1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 0, 2, -2, -1, 1, -1, 1, 3, -3, -1, 1, 0, -3, 3, 4, -4, -1, 1, 1, -1, -6, 6, 5, -5, -1, 1, 0, 4, -4, -10, 10, 6, -6, -1, 1, -1, 1, 10, -10, -15, 15, 7, -7, -1, 1, 0, -5, 5, 20, -20, -21, 21, 8, -8, -1, 1
OFFSET
0,12
COMMENTS
Triangle T(n,k), read by rows, given by (-1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
FORMULA
T(n,k) = T(n-1,k-1) - T(n-2,k), T(0,0) = 1, T(0,1) = -1, T(0,2) = 0.
G.f.: (1-x+x^2)/(1-y*x+x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A184334(n), A163805(n), A000007(n), A028310(n), A025169(n-1), A005320(n) (n>0) for x = -1, 0, 1, 2, 3, 4 respectively.
T(n,n) = 1, T(n+1,n) = -1, T(n+2,n) = -n, T(n+3,n) = n+1, T(n+4,n) = n(n+1)/2 = A000217(n).
T(2n,2k) = (-1)^(n-k) * A128908(n,k), T(2n+1,2k+1) = -T(2n+1,2k) = A129818(n,k), T(2n+2,2k+1) = (-1)*A053122(n,k). - Philippe Deléham, Feb 09 2012
EXAMPLE
Triangle begins:
1;
-1, 1;
0, -1, 1;
1, -1, -1, 1;
0, 2, -2, -1, 1;
-1, 1, 3, -3, -1, 1;
0, -3, 3, 4, -4, -1, 1;
1, -1, -6, 6, 5, -5, -1, 1;
0, 4, -4, -10, 10, 6, -6, -1, 1;
-1, 1, 10, -10, -15, 15, 7, -7, -1, 1;
0, -5, 5, 20, -20, -21, 21, 8, -8, -1, 1;
1, -1, -15, 15, 35, -35, -28, 28, 9, -9, -1, 1;
MATHEMATICA
CoefficientList[Series[CoefficientList[Series[(1 - x + x^2)/(1 - y*x + x^2), {x, 0, 10}], x], {y, 0, 10}], y] // Flatten (* G. C. Greubel, Jun 27 2017 *)
CROSSREFS
Cf. A206474 (unsigned version).
Sequence in context: A379592 A286634 A099245 * A206474 A211999 A175025
KEYWORD
easy,sign,tabl
AUTHOR
Philippe Deléham, Feb 08 2012
STATUS
approved