login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185327
Number of partitions of n into parts >= 7.
20
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 18, 20, 24, 27, 32, 36, 42, 48, 56, 63, 73, 83, 96, 108, 125, 141, 162, 183, 209, 236, 270, 304, 346, 390, 443, 498, 565, 635, 719, 807, 911, 1022, 1153, 1291, 1453, 1628, 1829, 2045
OFFSET
0,15
COMMENTS
a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 7 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
By removing a single part of size 7, an A026800 partition of n becomes an A185327 partition of n - 7. Hence this sequence is essentially the same as A026800.
FORMULA
G.f.: Product_{m>=7} 1/(1-x^m).
a(n) = p(n) - p(n-1) - p(n-2) + p(n-5) + 2*p(n-7) - p(n-9) - p(n-10) - p(n-11) - p(n-12) + 2*p(n-14) + p(n-16) - p(n-19) - p(n-20) + p(n-21) where p(n)=A000041(n). - Shanzhen Gao, Oct 28 2010 [moved/copied from A026800 by Jason Kimberley, Feb 03 2011]
This sequence is the Euler transformation of A185117.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 5*Pi^6 / (6*sqrt(3)*n^4). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=0} x^(7*k) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 28 2020
G.f.: 1 + Sum_{n >= 1} x^(n+6)/Product_{k = 0..n-1} (1 - x^(k+7)). - Peter Bala, Dec 01 2024
EXAMPLE
The a(0)=1 empty partition vacuously has each part >= 7.
The a(7)=1 partition is 7.
The a(8)=1 partition is 8.
............................
The a(13)=1 partition is 13.
The a(14)=2 partitions are 7+7 and 14.
MAPLE
seq(coeff(series(1/mul(1-x^(m+7), m = 0..80), x, n+1), x, n), n = 0..70); # G. C. Greubel, Nov 03 2019
MATHEMATICA
f[1, 1] = f[0, k_] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Table[ f[n, 7], {n, 0, 65}] (* Robert G. Wilson v, Jan 31 2011 *) (* moved from A026800 by Jason Kimberley, Feb 03 2011 *)
Join[{1}, Table[Count[IntegerPartitions[n], _?(Min[#]>=7&)], {n, 0, 70}]] (* Harvey P. Dale, Oct 16 2011 *)
CoefficientList[Series[1/QPochhammer[x^7, x], {x, 0, 75}], x] (* G. C. Greubel, Nov 03 2019 *)
PROG
(Magma) p := func< n | n lt 0 select 0 else NumberOfPartitions(n) >;
A185327 := func< n | p(n)-p(n-1)-p(n-2)+p(n-5)+2*p(n-7)-p(n-9)-p(n-10)- p(n-11)-p(n-12)+2*p(n-14)+p(n-16)-p(n-19)-p(n-20)+p(n-21) >;
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+7): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
(PARI) my(x='x+O('x^70)); Vec(1/prod(m=0, 80, 1-x^(m+7))) \\ G. C. Greubel, Nov 03 2019
(Sage)
def A185327_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/product((1-x^(m+7)) for m in (0..80)) ).list()
A185327_list(70) # G. C. Greubel, Nov 03 2019
CROSSREFS
2-regular simple graphs with girth at least 7: A185117 (connected), A185227 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), this sequence (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
Sequence in context: A026825 A025150 A026800 * A210717 A171962 A238208
KEYWORD
nonn,easy
AUTHOR
Jason Kimberley, Feb 03 2011
STATUS
approved