login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into parts >= 7.
20

%I #44 Dec 01 2024 10:03:26

%S 1,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,3,3,4,4,5,6,7,8,10,11,13,15,18,20,24,

%T 27,32,36,42,48,56,63,73,83,96,108,125,141,162,183,209,236,270,304,

%U 346,390,443,498,565,635,719,807,911,1022,1153,1291,1453,1628,1829,2045

%N Number of partitions of n into parts >= 7.

%C a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 7 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.

%C By removing a single part of size 7, an A026800 partition of n becomes an A185327 partition of n - 7. Hence this sequence is essentially the same as A026800.

%H G. C. Greubel, <a href="/A185327/b185327.txt">Table of n, a(n) for n = 0..1000</a>

%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/E_k-reg_girth_ge_g_index">Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g</a>

%F G.f.: Product_{m>=7} 1/(1-x^m).

%F a(n) = p(n) - p(n-1) - p(n-2) + p(n-5) + 2*p(n-7) - p(n-9) - p(n-10) - p(n-11) - p(n-12) + 2*p(n-14) + p(n-16) - p(n-19) - p(n-20) + p(n-21) where p(n)=A000041(n). - _Shanzhen Gao_, Oct 28 2010 [moved/copied from A026800 by _Jason Kimberley_, Feb 03 2011]

%F This sequence is the Euler transformation of A185117.

%F a(n) ~ exp(Pi*sqrt(2*n/3)) * 5*Pi^6 / (6*sqrt(3)*n^4). - _Vaclav Kotesovec_, Jun 02 2018

%F G.f.: Sum_{k>=0} x^(7*k) / Product_{j=1..k} (1 - x^j). - _Ilya Gutkovskiy_, Nov 28 2020

%F G.f.: 1 + Sum_{n >= 1} x^(n+6)/Product_{k = 0..n-1} (1 - x^(k+7)). - _Peter Bala_, Dec 01 2024

%e The a(0)=1 empty partition vacuously has each part >= 7.

%e The a(7)=1 partition is 7.

%e The a(8)=1 partition is 8.

%e ............................

%e The a(13)=1 partition is 13.

%e The a(14)=2 partitions are 7+7 and 14.

%p seq(coeff(series(1/mul(1-x^(m+7), m = 0..80), x, n+1), x, n), n = 0..70); # _G. C. Greubel_, Nov 03 2019

%t f[1, 1] = f[0, k_] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Table[ f[n, 7], {n, 0, 65}] (* _Robert G. Wilson v_, Jan 31 2011 *) (* moved from A026800 by _Jason Kimberley_, Feb 03 2011 *)

%t Join[{1},Table[Count[IntegerPartitions[n],_?(Min[#]>=7&)],{n,0,70}]] (* _Harvey P. Dale_, Oct 16 2011 *)

%t CoefficientList[Series[1/QPochhammer[x^7, x], {x, 0, 75}], x] (* _G. C. Greubel_, Nov 03 2019 *)

%o (Magma) p := func< n | n lt 0 select 0 else NumberOfPartitions(n) >;

%o A185327 := func< n | p(n)-p(n-1)-p(n-2)+p(n-5)+2*p(n-7)-p(n-9)-p(n-10)- p(n-11)-p(n-12)+2*p(n-14)+p(n-16)-p(n-19)-p(n-20)+p(n-21) >;

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+7): m in [0..80]]) )); // _G. C. Greubel_, Nov 03 2019

%o (PARI) my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+7))) \\ _G. C. Greubel_, Nov 03 2019

%o (Sage)

%o def A185327_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( 1/product((1-x^(m+7)) for m in (0..80)) ).list()

%o A185327_list(70) # _G. C. Greubel_, Nov 03 2019

%Y 2-regular simple graphs with girth at least 7: A185117 (connected), A185227 (disconnected), this sequence (not necessarily connected).

%Y Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), this sequence (g=7), A185328 (g=8), A185329 (g=9).

%Y Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).

%K nonn,easy

%O 0,15

%A _Jason Kimberley_, Feb 03 2011