login
A140826
Arithmetic nondivisor means.
7
3, 4, 5, 7, 11, 13, 17, 18, 19, 20, 23, 24, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
OFFSET
1,1
COMMENTS
Numbers n such that A024816(n)/(n-A000005(n)) is an integer.
Numbers n such that A231167(n) = 0. - Jaroslav Krizek, Nov 07 2013
Union of odd primes (A065091) and composites from A230605 (4, 18, 20, 24, 432, 588...). - Jaroslav Krizek, Nov 07 2013
LINKS
FORMULA
Numbers n such that (n*n+n-2*A000203(n))/(2*n-2*A000005(n)) is an integer.
EXAMPLE
n=18: numbers less than n which do not divide n are 4,5,7,8,10,11,12,13,14,15,16,17.
antisigma_1(18) = 4+5+7+8+10+11+12+13+14+15+16+17 = 132.
antisigma_0(18) = 12.
132/12 = 11 which is an integer so n=18 belongs to the sequence.
MAPLE
A024816 := proc(n) n*(n+1)/2-numtheory[sigma](n) ; end:
isA140826 := proc(n) if A024816(n) mod ( n-A000005(n)) = 0 then true; else false; fi; end:
for n from 3 to 400 do if isA140826(n) then printf("%d, ", n) ; fi; od: # R. J. Mathar, Dec 13 2008
MATHEMATICA
Select[Range[3, 300], IntegerQ[(#^2 + # - 2 DivisorSigma[1, #])/(2# - 2 DivisorSigma[0, #])]&] (* Jean-François Alcover, May 11 2023 *)
PROG
(PARI) isok(n) = (nnd = n - numdiv(n)) && !((n*(n+1)/2-sigma(n)) % nnd); \\ Michel Marcus, Nov 09 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ctibor O. Zizka, Jul 17 2008
EXTENSIONS
Inserted 20 and extended by R. J. Mathar, Dec 13 2008
STATUS
approved