login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized Lucas-Pascal triangle; (11*10^n, 1).
4

%I #26 Dec 26 2017 01:23:11

%S 1,11,1,110,12,1,1100,122,13,1,11000,1222,135,14,1,110000,12222,1357,

%T 149,15,1,1100000,122222,13579,1506,164,16,1,11000000,1222222,135801,

%U 15085,1670,180,17,1

%N Generalized Lucas-Pascal triangle; (11*10^n, 1).

%H Robert Israel, <a href="/A164851/b164851.txt">Table of n, a(n) for n = 0..10010</a>(rows 0 to 140, flattened)

%F T(0,0)=1, T(n+1,0)=11*10^n, T(n,n)=1, T(n,k)=T(n-1,k-1)+T(n-1,k) for 0<k<n. - _Philippe Deléham_, Dec 27 2013

%F G.f. as triangle: (1-x^2)/((1-10*x)*(1-x-x*y)). - _Robert Israel_, Jul 17 2017

%e Triangle begins:

%e 1;

%e 11, 1;

%e 110, 12, 1;

%e 1100, 122, 13, 1;

%e 11000, 1222, 135, 14, 1;

%e 110000, 12222, 1357, 149, 15, 1;

%e 1100000, 122222, 13579, 1506, 164, 16, 1;

%e 11000000,1222222, 135801, 15085, 1670, 180, 17, 1;

%e ...

%p G[0]:= 1;

%p G[1]:= 11+x;

%p G[2]:= 110+12*x+x^2;

%p for nn from 3 to 20 do

%p G[nn]:= expand((x+11)*G[nn-1]-10*(x+1)*G[nn-2]);

%p od:

%p seq(seq(coeff(G[n],x,j),j=0..n),n=0..20); # _Robert Israel_, Jul 17 2017

%t T[0, 0] := 1; T[n_, n_] := 1; T[n_, 0] := 11*10^(n - 1); T[n_, k_] := T[n - 1, k - 1] + T[n - 1, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] //Flatten (* _G. C. Greubel_, Dec 22 2017 *)

%Y Cf. A029635, A164844, A228196.

%K nonn,tabl

%O 0,2

%A _Mark Dols_, Aug 28 2009

%E Initial 1 added by _Philippe Deléham_, Dec 27 2013